广告
广告
您的位置: 资讯中心 > 技术文献 > 正文

怎样为FPGA选择最合适的电源管理方案?

2018-05-14 17:13:48 来源:Frederik Dostal 点击:377

【大比特导读】寻找为FPGA供电的最佳解决方案并不简单。许多供应商以适合为FPGA供电的名义推销某些产品。为FPGA供电的DC-DC转换器选择有何特定要求?其实并不多。

找到合适的电源解决方案

寻找为FPGA供电的最佳解决方案并不简单。许多供应商以适合为FPGA供电的名义推销某些产品。为FPGA供电的DC-DC转换器选择有何特定要求?其实并不多。一般而言,所有电源转换器都可用来为FPGA供电。推荐某些产品通常是基于以下事实:许多FPGA应用需要多个电压轨,例如用于FPGA内核和I/O,还可能需要额外的电压轨来用于DDR存储器。将多个DC-DC转换器全部集成到单个稳压器芯片中的PMIC(电源管理集成电路)常常是首选。

一种为特定FPGA寻找优秀供电解决方案的流行方法是使用许多FPGA供应商都提供的已有电源管理参考设计。这对于优化设计来说是一个很好的入门方式。但此类设计往往需要修改,因为FPGA系统通常需要额外的电压轨和负载,这些也需要供电。在参考设计上增加一些东西常常也是必要的。还有一件事需要考虑,那就是FPGA的输入电源不是固定的。输入电压在很大程度上取决于实际的逻辑电平以及FPGA所实现的设计。完成对电源管理参考设计的修改之后,它看起来将与最初的参考设计不同。可能有人会辩称,最好的解决方案是根本不用电源管理参考设计,而是直接将所需的电压轨和电流输入到电源管理选型与优化工具中,例如ADI公司的 LTpowerCAD等。

LTpowerCAD18051401

图1. 通过LTpowerCAD工具选择合适的DC-DC转换器来为FPGA供电。

LTpowerCAD可用来为各个电压轨提供电源解决方案。它还提供一系列参考设计,以让设计人员快速入门。LTpowerCAD可以从ADI公司网站免费下载。

一旦选择了电源架构和各个电压转换器,就需要选择合适的无源元件来设计电源。做这件事时,需要牢记FPGA的特殊负载要求。

它们分别是:

●各项电流需求

●电压轨时序控制

●电压轨单调上升

●快速电源瞬变

●电压精度

各项电流需求

FPGA的实际电流消耗在很大程度上取决于使用情况。不同的时钟和不同的FPGA内容需要不同的功率。因此,在FPGA系统的设计过程中,典型FPGA设计的最终电源规格必然会发生变化。FPGA制造商提供的功率估算工具有助于计算解决方案所需的功率等级。在构建实际硬件之前,获得这些信息会非常有用。但是,为了利用此类功率估算工具获得有意义的结果,FPGA的设计必须最终确定,或者至少接近最终完成。

通常情况下,工程师设计电源时考虑的是最大FPGA电流。如果最终发现实际FPGA设计需要的功率更少,设计人员就会缩减电源。

电压轨时序控制

许多FPGA要求不同电源电压轨以特定顺序上电。内核电压的供应往往需要早于I/O电压的供应,否则一些FPGA会被损坏。为了避免这种情况,电源需要按正确的顺序上电。使用标准DC-DC转换器上的使能引脚,可以轻松实现简单的上电时序控制。然而,器件关断通常也需要时序控制。仅执行使能引脚时序控制,很难取得良好的结果。更好的解决办法是使用具有高级集成时序控制功能的PMIC,例如 ADP5014。图2中用红色表示的特殊电路模块支持调整上电和关断时序。

LTpowerCAD18051402
图2. ADP5014 PMIC集成了对灵活控制上电/关断时序的支持。

图3显示了利用此器件实现的时序控制。通过ADP5014上的延迟(DL)引脚可以轻松调整上电和关断时序的时间延迟。

如果使用多个单独的电源,增加时序控制芯片便可实现所需的上电/关断顺序。一个例子是LTC2924,它既能控制DC-DC转换器的使能引脚来打开和关闭电源,也能驱动高端N沟道MOSFET来将FPGA与某个电压轨连接和断开。

LTpowerCAD18051403
图3. 多个FPGA电源电压的启动和关断顺序。

电压轨单调上升

除了电压时序之外,启动过程中还可能要求电压单调上升。这意味着电压仅线性上升,如图4中的电压A所示。此图中的电压B是电压非单调上升的例子。在启动过程中,当电压上升到一定电平时负载开始拉大电流,就会发生这种情况。防止这种情况的一种办法是延长电源的软启动时间,并选择能够快速提供大量电流的电源转换器。

LTpowerCAD18051404
图4. 电压A单调上升,电压B非单调上升。

快速电源瞬变

FPGA的另一个特点是它会非常迅速地开始抽取大量电流。这会在电源上造成很高的负载瞬变。出于这个原因,许多FPGA需要大量的输入电压去耦。陶瓷电容非常靠近地用在器件的VCORE和GND引脚之间。高达1 mF的值非常常见。如此高电容有助于降低对电源提供非常高峰值电流的需求。但是,许多开关稳压器和LDO规定了最大输出电容。FPGA的输入电容要求可能超过电源允许的最大输出电容。

电源不喜欢非常大的输出电容,因为在启动期间,开关稳压器的输出电容看来像是短路的。对此问题有一个解决办法。较长的软启动时间可以让大电容组上的电压稳定地升高,电源不会进入短路限流模式。

LTpowerCAD18051405

图5. 很多FPGA的输入电容要求。

一些电源转换器不喜欢过大输出电容的另一个原因是该电容值会成为调节环路的一部分。集成环路补偿的转换器不允许输出电容过大,以防止稳压器的环路不稳定。在高端反馈电阻上使用前馈电容常常可以影响控制环路,如图6所示。

LTpowerCAD18051406

图6. 当没有环路补偿引脚可用时,利用前馈电容可以调节控制环路。

针对电源的负载瞬变和启动行为,开发工具链(包括LTpower-CAD,尤其是LTspice)非常有帮助。该工具可以很好的建模和仿真,从而有效实现FPGA的大输入电容与电源的输出电容的去耦。图6展示了这一概念。虽然POL(负载端)电源的位置往往靠近负载,但在电源和FPGA输入电容之间常常存在一些PCB走线。当电路板上有多个彼此相邻的FPGA输入电容时,离电源最远的那些电容对电源传递函数的影响较小,因为它们之间不仅存在一些电阻,还存在寄生走线电感。这些寄生电感允许FPGA的输入电容大于电源输出电容的最大限值,即使所有电容都连接到电路板上的同一节点也无妨。在LTspice中,可以将寄生走线电感添加到原理图中,并且可以模拟这些影响。当电路建模中包含足够的寄生元件时,仿真结果接近实际结果。

LTpowerCAD18051407

图7. 电源输出电容与FPGA输入电容之间的寄生去耦。

电压精度

FPGA电源的电压精度通常要求非常高。3%的变化容差带是相当常见的。例如,为使0.85 V的Stratix V内核电压轨保持在3%的电压精度窗口内,要求全部容差带仅为25.5 mV。这个小窗口包括负载瞬变后的电压变化以及直流精度。同样,对于此类严格要求,包括LTpowerCAD和LTspice在内的可用电源工具链在电源设计过程中非常重要。

最后一点建议是关于FPGA输入电容的选择。为了快速提供大电流,通常选择陶瓷电容。此类电容很适合这种用途,但需要小心选择,使其真实电容值不随直流偏置电压而下降。一些陶瓷电容,尤其是Y5U型,当直流偏置电压接近其最大额定直流电压时,其真实电容值会降低到只有标称值的20%。

本文由大比特资讯收集整理(www.big-bit.com)

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
电源管理 电源
  • 大联大推出基于NXP产品的BMS动力电池管理系统解决方案

    大联大推出基于NXP产品的BMS动力电池管理系统解决方案

    BMS,也就是电池管理系统,是连接电动汽车最核心部件“电池”与整车的关键纽带。

  • 施耐德电气护航中国首台9.4T核磁共振成像系统稳定运行

    施耐德电气护航中国首台9.4T核磁共振成像系统稳定运行

    近日,全球能效管理和自动化领域数字化转型的领导者施耐德电气宣布,成功为中国科学院生物物理研究所9.4T核磁共振成像系统提供UPS电源、冷水机组,及中央空调等整体配套解决方案,以一体化的专业技术能力为中国首台9.4T核磁共振成像系统的稳定运行提供坚实保障。

  • 银联宝科技贴片式封装SOP-8电源管理芯片TB6818

    银联宝科技贴片式封装SOP-8电源管理芯片TB6818

    电源管理芯片,是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。

  • 高通称已经有方案解决双屏设备的电源消耗问题

    高通称已经有方案解决双屏设备的电源消耗问题

    高通公司产品管理高级总监Miguel Nunes在接受采访时表示,高通正在准备一个解决方案来解决由微软Windows 10操作系统驱动的双屏设备的电源问题。

  • Maxim推出高性能电源管理IC

    Maxim推出高性能电源管理IC

    Maxim 宣布推出一对功能丰富、高性能、可扩展的电源管理IC (PMIC),帮助移动产品设计者最大程度地提升每瓦功耗的性能,并提高系统效率,可广泛运用在高密度深度学习片上系统(SoC)、FPGA和应用处理器。

  • 智能家居正被重新定义 海尔推出新智能音箱“小优”

    智能家居正被重新定义 海尔推出新智能音箱“小优”

    “智能家庭”的概念在几年前就被提出来了。至今,除了少数互联网品牌通过APP识别自有产品实现智能平台统一管理之外,大多数智能产品基本上是处于“各自为政”的状态。而海尔智能音箱“小优”以语音控制的方式,管理房间内的智能家电,与手机APP操作相比,语音控制更加适合担当智慧家庭的交互入口。

  • 松下将向本田供应锂离子电池 用于可更换电池组

    松下将向本田供应锂离子电池 用于可更换电池组

    据外媒报道,松下公司(Panasonic Corp)将向本田汽车有限公司(Honda Motor Co Ltd)供应车用锂离子电池。该电池的多个单元组合成一个“可更换电池组”,将用于本田的踏板电动两轮车(电动摩托车)和紧凑型四轮电动汽车。

  • 真的“锰”士:小众动力电池逆袭新能源汽车市场

    真的“锰”士:小众动力电池逆袭新能源汽车市场

    在中国,新能源汽车产业依然是一个受政策影响明显的产业,动力电池产业格局也随之受影响。尤其是补贴政策的调整,正在对全产业链带来不可忽视的影响。

  • 关于VIPER26LD的隔离反激式电源设计方案

    关于VIPER26LD的隔离反激式电源设计方案

    本文主要介绍了基于VIPER26LD的隔离反激式AC/DC电源参考设计方案。经分析验证本方案是专为电源而设计的一款低成本的和节省空间的解决方案。

  • 直流变换器应用实例汇总分析

    直流变换器应用实例汇总分析

    直流交换器比逆变器成本整低得多。在很多地方都可以用直流变换器替代逆交器,如在汽车上使用手机充电器,卫星接收机,笔记本电脑。如果把直流交换器的输出设计成直流300V就和220V交流经整流滤波后的电压相一致了。

  • elmos 推出用于无刷直流电机应用的三相半桥驱动器E523.50

    elmos 推出用于无刷直流电机应用的三相半桥驱动器E523.50

    德国elmos公司日前宣布推出一款用于直流无刷(BLDC)电机的72V三相半桥驱动器E523.50,产品应用于12/24V车载和48V板级电网供电的汽车应用及24V至60V供电电源的工业应用,该IC符合AEC-Q100标准0级(150°C)需求。

  • 铅炭电池关键材料国产化

    铅炭电池关键材料国产化

    记者近日从吉林大学了解到,该校化学学院林海波教授团队用稻壳制备出铅炭电池的关键碳材料,并建成了百吨级超级电容炭和千吨级电池碳的工业化生产装置,相应的铅炭电池生产工艺包已开发完成,采用这种材料可制备高性价比的铅炭电池。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 1999-2017 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任