广告
广告
预见2019:《中国人工智能芯片产业全景图谱》
您的位置 资讯中心 > 产业新闻 > 正文

预见2019:《中国人工智能芯片产业全景图谱》

2019-04-19 16:55:32 来源:前瞻产业研究院 点击:3769

【大比特导读】人工智能芯片的定义从广义上讲只要能够运行人工智能算法的芯片都叫作人工智能芯片。但是通常意义上的人工智能芯片指的是针对人工智能算法做了特殊加速设计的芯片。现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。

行业现阶段处幼稚期,下游应用场景亟需拓宽

人工智能芯片的定义从广义上讲只要能够运行人工智能算法的芯片都叫作人工智能芯片。但是通常意义上的人工智能芯片指的是针对人工智能算法做了特殊加速设计的芯片。现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。

人工智能芯片分类一般有按技术架构分类、按功能划分、按应用场景分类三种分类方式。相关分类方式下的具体分类情况如下图所示:

 

 

当前,我国人工智能芯片行业正处在生命周期的幼稚期,主要原因是国内人工智能芯片行业的整体销售市场正处于快速增长阶段,传统芯片的应用场景逐渐被人工智能专用芯片所取代,市场对于人工智能芯片的需求将随着云/边缘计算、智慧型手机和物联网产品一同增长,并且在这期间,国内的许多企业纷纷发布了自己的专用AI芯片;尽管国内人工智能芯片正逐渐取代传统芯片,但是集成商或芯片企业仍在寻找新的合作模式,这样才能很好地抓住新客户的需求,除了当前的合作客户,拓展新客户合作开发产品是困难的,因此纷纷推出开源或开放平台让客户开发新需求。

 

 

人工智能芯片产业链上游主要是为人工智能芯片企业提供算法和IP的行业,目前比较流行的算法有神经网络算法和AI算法,其中提供AI算法的知名企业大部分为国外巨头,如谷歌、微软、亚马逊等;人工智能芯片行业主要分为芯片设计和芯片制造两个子类,我国芯片设计企业在近几年发展较快,涌现了一大批像海思、寒武纪、比特大陆这样的优质企业。除此之外一些开发工具厂商与半导体封装与测试厂商也为人工智能芯片行业提供一些核心技术和零部件;当前我国人工智能芯片行业的下游应用场景主要聚集在云端、自动驾驶、智能手机、无人机、智能、安防等领域。

 

 

政策+资本双重驱动,中国“芯”发展迅猛

近几年国家高度关注人工智能芯片产业的发展,相继发布一系列产业支持政策。2018年新发布的《人工智能标准化白皮书(2018版)》中宣布成立立国家人工智能标准化总体组、专家咨询组,负责全面统筹规划和协调管理我国人工智能标准化工作。在人工智能和芯片行业同时作为国家级战略的背景下,AI 芯片产业有望引领中国“芯”大步向前。

 

 

资本推动是 AI 芯片高速发展的另一个重要因素。近年来国内主要 AI 芯片生产研究参与者多次获得大额融资。大量的资本投入加速了 AI 芯片的研发过程,并进一步带动 AI 芯片市场拓展。2015 年之后,陆续涌现出一批 AI 芯片创业公司,还催生了部分独角兽企业。

 

 

在政策和资本的双重推动下,国内 AI 芯片市场发展迅猛。伴随国内人工智能芯片市场的发展,多位工业级创始人团队开始投入AI SIC。2016-2017年为导入期,2018年为整合期,在多笔融资过亿的资本项目推动下这些创始人团队所在的公司在2018年相继推出了可量产的人工智能芯片产品。2018年行业整合后,多个国产AI SIC可以供货,将能够满足下游安防厂商、互联网厂商、机器人厂商的旺盛需求。

 

 

国内企业专攻某类领域,需完善自身产业链

从全球范围内各大人工智能芯片企业产品布局情况来看,各个种类的人工智能芯片领域几乎都能看到国外半导体巨头的影子,反观国内的人工智能芯片企业,由于它们大部分是新创公司,所以在人工智能芯片领域的渗透率较低,这些企业主要聚集在ASIC、类脑和DSP领域,如寒武纪主打ASIC芯片,中星微电子在DSP芯片领域有所研究,而近几年兴起的类脑芯片领域,西井科技有所涉足。

 

 

2018年,国内人工智能芯片取得长足的发展,越来越多的企业开始布局该行业。一方面,新版、升级版人工智能芯片相继发布,新版本芯片取得突破性发展。以华为为例,在华为全连接大会上,发布两款 AI 芯片——华为升腾910和升腾310,升腾910 是目前单芯片计算密度最大的芯片,计算力远超谷歌及英伟达,而升腾310芯片的最大功耗仅8W,是极致高效计算低功耗AI芯片。另一方面,芯片领域迎来众多新玩家,百度、阿里巴巴、亚马逊等互联网公司相继进入人工智能芯片领域,推出或计划推出相应产品。

 

 

国内厂商竞争优势不明显,但在特定领域有成功案例

目前国内人工智能芯片设计企业的商业模式分为IP设计、芯片设计代工、芯片设计三种类型。IP设计相对于芯片设计是在更顶层的产业链位置,以IP核授权收费为主;芯片设计代工和制造业的代工一样,提供代工设计服务的企业,并不能再产品上贴上自己的标签,也不能对外宣布该产品为自己设计的芯片;大部分的人工智能新创企业是以芯片设计为主,但目前国内只有少数人工智能芯片设计企业会进入传统芯片企业的产品领域,如寒武纪与英伟达竞争服务器芯片市场、地平此案与英伟达及恩智浦竞争自动驾驶芯片市场,其余是在物联网场景上布局(如提供语音辨识芯片的云知声、提供人脸辨识芯片的中星微电子、提供边缘计算芯片的耐能科技)。

 

 

专用人工智能芯片领域的竞争格局:国际巨头谷歌与英伟达在机器学习终端解决方案模块及软件与固件上处于垄断地位,可以看出未来在人工智能端的应用领域已经不再单单是人工智能算法、IP到芯片的竞争,而国内的人工智能算法/IP/芯片龙头公司像寒武纪,地平线为了存活,就必须与应用领域系统公司紧密合作,共同推出更佳的嵌入式或独立式解决方案模块及软,固件,否则就要像谷歌和英伟达一样推出自己整套的解决方案。虽然比特大陆及嘉楠耘智进入人工智能芯片领域较晚,但其在挖矿机业务及挖矿生态系的系统整合经验,反而比只具备算法/IP/芯片的人工智能设计公司还有机会。

 

 

行业融资总额超30亿美元,但超大型融资事件较少

据不完全统计,目前中国的一级投资市场上,以人工智能芯片设计为主要业务的企业中,有20家参与融资活动,按照投融资阶段分类,有4家企业在A轮之前阶段,11家企业在A轮阶段,3家在B轮阶段,仅有2家在C轮阶段之后。

 

 

截至2018年底,中国人工智能芯片企业融资总额超过30亿美元,但仅有3家企业融资总金额超过2亿美元,分别是比特大陆、地平线与寒武纪;有2家企业融资总额在5000万美元到2亿美元之间,分别是熠知电子和触景无限;其余15家企业的融资总金额都在5000万美元以下。

 

 

行业创新技术正逐步解决两大困境,三大技术趋势将出现

人工智能芯片行业在发展的过程中正面临两大困境:一是冯•诺依曼的“内存墙”—— 在 AI 芯片实现中,由于访问存储器的速度无法跟上运算部件消耗数据的速度,再增加运算部件也无法得到充分利用,即形成所谓的冯·诺伊曼“瓶颈”,或“内存墙”问题,是长期困扰计算机体系结构的难题。另一个是摩尔定律“失效”—— 由于基础物理原理限制和经济的原因,持续提高集成密度将变得越来越困难。

而随着近几年可以存储模拟数值的非易失性存储器发展迅猛,它可以同时具有存储和处理数据能力,可以破解传统计算体系结构的一些基本限制,有望实现类脑突触功能,随即上述两项困境也将逐步得到解决。

从英伟达的V100 GPU芯片和谷歌的Cloud TPU芯片的相继发布可以看出云端人工智能芯片在架构层面,技术发展呈现三大趋势:

一是芯片存储的需求越来越高。未来云端人工智能芯片会有越来越多的片上存储器,以及能够提供高宽带的片外存储器。

二是芯片的处理能力将推想每秒千万亿次,并支持灵活伸延和部署。对云端 AI 芯片来说,单芯片的处理能力可能会达到每秒千万亿次的水平。实现这一目标除了要依靠CMOS工艺的进步,也需要架构的创新。比如在谷歌第一代TPU中,使用了脉动阵列架构,而在 英伟达的V100 GPU中,专门增加了张量核来处理矩阵运算。

三是专门针对推断需求的FPGA和ASIC芯片将会越来越多。推断和训练相比有其特殊性,更强调吞吐率、能效和实时性,未来在云端很可能会有更多专门针对推断的ASIC芯片出现。

以上数据来源于前瞻产业研究院发布的《全球人工智能芯片行业市场前瞻与投资战略规划分析报告》。

本文由大比特商务网收集整理(www.big-bit.com)


声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

分享到:
阅读延展
人工智能芯片
  • 海宁研发出全球首款超高性能异构AI芯片

    海宁研发出全球首款超高性能异构AI芯片

    近日,位于海宁泛半导体产业园的浙江芯盟科技有限公司成功研发出全球首款超高性能异构AI芯片。据了解,芯盟科技成立于2018年11月,是一家专业从事类人感知人工智能芯片创新设计与智能生态孵化的企业,拥有国家级人才2人,省级人才1人,世界名校博士4人。

  • Edge将淘汰云作为AI芯片市场的驱动力

    Edge将淘汰云作为AI芯片市场的驱动力

    随着人们越来越关注低延迟、数据隐私以及低成本、超节能的人工智能芯片组的可用性,edge人工智能(AI)芯片组市场有望在2025年首次超过云AI芯片组市场。

  • 探讨人工智能芯片设计和开发的6个挑战

    探讨人工智能芯片设计和开发的6个挑战

    深度学习为现实世界普遍存在复杂非线性问题提供了一种通用框架——不是写程序,目前AI芯片设计从算法开始,经历架构设计、逻辑设计和验证、物理设计和验证。对于芯片开发和应用方法,乃至处理器架构和编程提出了挑战。

  • 在可穿戴设备上跑AI 超低功耗人工智能芯片引领全球的潮流

    在可穿戴设备上跑AI 超低功耗人工智能芯片引领全球的潮流

    工业应用领域:工业应用中对于超低功耗人工智能的需求往往来源于智能传感器。这类传感器安装在机器、机械臂、管道等重要环境中,传感器必须依靠电池供电,而超低功耗人工智能可以大大减少电池消耗,降低了这类传感器系统的部署和维护成本。

  • 人工智能芯片将助力可穿戴设备

    人工智能芯片将助力可穿戴设备

    人工智能与可穿戴设备的结合可以分为两大类,一类是借助网络和云端,可穿戴设备监测各种人体和环境数据,通过网络上传到云端,由云端人工智能芯片进行分析,传回相应的数据和指令。

  • 智慧路灯再有布局,华体科技成为中智城第二大股东

    智慧路灯再有布局,华体科技成为中智城第二大股东

    4月,华体科技在官网表示正式加入美国赛灵思公司(Xilinx)合作伙伴计划,成为赛灵思的生态合作伙伴,并联合发布了《加速智慧城市应用》白皮书。双方将合作研发基于智慧城市的人工智能芯片,加速智慧城市的应用落地。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯公司 版权所有       未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任