哔哥哔特网旗下:
技术与应用分类

运用“局部时钟树优化”的优化手段,在本案例中准确、有效的优化了存储器数据读取的时序路径,相比方法一主频提高了50MHz,相比方法二主频提高了20MHz。通过与其他优化手段相结合,本案例最终取得了1.39GHz的签收时序分析结果。

2011-10-11关键字:IP芯片存储器数据时钟驱动分类: 半导体

电池的外形尺寸将对电源系统结构有重大影响。要使用大量小型电池以适合形状复杂的电池模块 (或电池组) 吗? 或者要使用外形尺寸很大的电池,因而由于重量问题而导致对电池数量的限制或引起其他的尺寸限制?这也许是设计变数最大的部分,因为外形新颖的电池不断上市,而且人们也在不断努力,务求电池模块或电池组集成到产品...

2011-10-08关键字:监视器电路遥测信号维修设备分类: 半导体

电池管理系统的任务是,仔细跟踪和控制每节电池的充电状态。电池管理系统的测量准确度至关重要,因为它决定了每节电池能多么靠近其可靠充电状态范围的边缘工作。最大限度地提高可用容量的能力决定了所需的电池数量,而电池数量对成本和重量有很大的影响。准确地测量每节电池的电压相当困难,因为电池组中的电池易受高共...

由于系列产品覆盖宽范围的输入电压,这些稳压器可以直接在如12V至27V的电压导轨下工作,因而不需要转换到较低的中间电压。SupIRBuck系列和类似器件还提供了内置保护特性和增殖功能,例如允许精确编程输出电压的精密电压参考。

本文论述一个新颖的简单的适用于各种类型硬开关功率转换器的电能回收电路,这个电路只需使用几个意法半导体的元器件:一个微型线圈、两个耦合辅助线圈和两个优化的PN 二极管。而且,这个电路完全兼容任何一种PWM 控制器。我们在这里论述这个成本最低且能效更高的独特的电能回收电路的基本设计方法。

本文设计了一台基于DSPTMS320F2806的电感电流内环,输出电压瞬时值中环,输出电压平均值最外环反馈的5kVA逆变电源,取得了较好的控制效果。

由于容量的限制, 电容的作用一直被限制在滤波、耦合、谐振等方面。随着超级电容的发展,其应用范围得到不断拓宽。本文介绍了一种替代蓄电池的超级电容储能模块,通过合理地设计充电和稳压电路,该模块的能量输出可达到59200J,具有稳定性好,转换效率高等特点。通过matlab软件计算本文充电电路的电流与效率之间关系,并...

2011-09-27关键字:超级电容蓄电池充电电流分类: 半导体

本文将分析系统设计师可以采用的一些保护产品类型,并比较它们的特性。为了确保系统在遭受ESD事件时的鲁棒性,必须按照IEC 61000-4-2等标准来测试这些产品。系统设计师采用多种方法来确保产品符合主流的ESD标准,包括解决外壳设计、电路板设计、元件选择,甚至是软件修复。其中一个重要的方法是在输入和输出(I/O)连接器...

2011-09-27关键字:外壳电路板元件集成电路分类: 半导体

向未来微处理器提供基准电源管理方案的最后关键步骤就是将先进的功率硅片设计与一流的封装、创新的控制IC和新型的电源架构集成为一个完全可伸缩的整体。只有通过对整个系统方案的协同设计以及元件性能的协同匹配,才能开发出卓越的解决方案。

便携式设备中,大都选用重量轻、体积小、功能强的元器件。电源在所有元器件中占据着不可或缺的重要位置。锂离子电池因其体积小、容量大的特点大受市场欢迎,但对于长时间室外作业的时候,一块锂电池供电还是显得力不从心。对于供电保护设计好的设备,单电池电量不足可断开负载并进入休眠、关机等降低电源损耗,这固然保...

2011-09-21关键字:便携式设备备用电池微控制器分类: 半导体

UCC28810型LED普通照明电源控制器,支持单级PFC反激式变换器电路拓扑和传统Triac相位控制调光器调光。目前此类IC还有很多,如TPS92210等。LED调光有PWM调光、模拟电压调光和Triac等多种方式。对于LED普通照明应用来说,Triac调光方案被人们普通看好。

多相同步指的是以单一时钟频率对多个开关电源进行外部驱动的方法,该方法在每个稳压器之间设置了一个时移。通过使每个开关电源错开接通(这样一来,目前吸收输入电流的工作相位先前则是一个死区),峰值开关电流得以减小。因此,使多个开关稳压器“异相”(而不是“同相”)同步可以减小峰值电流,从而降低EMI。

本文基于单个分档的误差探讨了一种理想情况,并给出了一些实际的例子,这些例子使用两个或更多分档的LED,其容差也可更轻松地达到±5%、±10%或更高。在额外的控制回路中,应该将成本开销用于1%的电流控制,并可将电力用在更高的检测电压方面。

与传统硅器件相比,eGaN FET最大允许的栅极至源极电压是较低的。其次,其栅极阈值与大多数功率MOSFET相比也是较低的,但它受负温度系数的影响没那么大。第三,“体二极管”正向压降要比同等的硅MOSFET高1V。

2011-09-06关键字:衡量标准功率器件驱动电路分类: 半导体

Linear 公司的LTC4155是集成了I2C控制和USB OTG双路输入电源管理器和3.5A锂电池充电器,输入电源5V如USB端口和适配器,主要用在平板电脑,超薄移动电脑,智能手机,数码相机,GPS,PDA,视频媒体播放器以及手持媒体设备.本文介绍了LTC4155主要特性,方框图以及多种应用电路.

2011-09-05关键字:电源管理器USB端口适配器分类: 半导体

运算放大器是模拟系统的主要构件,可提供增益、缓冲、滤波、混频和多种数学功能。在系统示意图中,运算放大器使用带五个连接(正电源、负电源、正输入、负输入及输出,如图1所示)的三角形来表示。电源引脚用于给元件供电。例如,可将其连接至±5V,或者在有特殊考虑时连接至+10V和地。

本文设计的稳压电源采用性能稳定常用的PWM 芯片SG3525 来进行反馈调整稳压,并通过51 单片机来设定输出电压,功放电路采用MOS 管搭建的双端推挽方式,提高了电源效率。系统测试和运行结果表明,该稳压电源使控制更加智能化,能够长期高效,稳定的工作,更够满足农业机械以及照明设备电路的持续工作需要,同时避免了大量...

本文介绍了NCP1251主要特性,方框图,典型应用电路以及20-25W低成本离线电源主要特性,指标和设计电路图与相应元器件数值.

2011-09-01关键字:PWM控制器电源电压固定频率分类: 半导体

本文介绍了UCC28950主要特性,方框图, 典型应用框图以及评估板UCC28950EVM-442主要特性, 效率测试连接图,电路图和材料清单.

2011-08-31关键字:服务器工业电源全桥控制器分类: 半导体

LTC3105是一款完整的单芯片解决方案,适用于从低成本、单节光伏电池收集能量。其集成的最大功率点控制和低压启动功能允许直接用单节光伏电池工作,并确保最佳能量抽取。LTC3105可用来直接给电路供电,或给能量存储器件充电,以允许在黑暗或光照很少时工作。LTC3105使其有可能实现自主远程传感器节点、数据收集系统,以及...

本系统各项指标均达到或超过设计指标。系统实际效率应略低于理论计算值,主要是因为计算中没有涉及boost 电感等损耗,进一步提高效率的措施是采用同步整流取代二极管整流等措施,本系统是一种较为理想的设计方案。

2011-08-29关键字:电力电子电源变换器分类: 半导体

本文将讨论在无线应用中对负载进行开关操作时您需要考虑的一些重要规范。我们还会介绍一些传统的解决方案,并表明如何使用集成负载开关来创建一种经过优化且易于实施的解决方案。

2011-08-25关键字:电池供电电源开关功率放大器分类: 半导体

本文分析了传统的串联三段式充电器充电不均衡的产生及其扩大的原因,并且据此改进了充电器的主电路结构,优化了控制方案。设计了一种新型的可对铅酸蓄电池实现三段式充电的方案,大大提高了蓄电池组的充电效率,有效地保护了电池,并且延长了电池组的使用寿命。

2011-08-24关键字:蓄电池充电器方案分类: 半导体

与以往的电池测试系统相比, 该测试平台可全面监测电池相关参数, 并加入充放电能量的计量, 可从能量的角度对电池的性能进行描述, 从能量状态( SOE,Sta te- O f- Energy)的角度对电池的使用效率进行分析。系统硬件电路具有电池过电压、欠电压保护及均衡功能, 可对单体电池进行监视和保护, 减小电池间的不一致性。在...

2011-08-24关键字:电池电动汽车硬件分类: 半导体

本文基于高速模拟PWM器件MCP1631HV设计了一种智能多功能充电器,能够实现不同的充电算法,可满足市场上对多功能、小体积以及高充电效率的需求,具有一定的优势和较高的应用价值。

2011-08-22关键字:便携式电池充电器硬件系统分类: 半导体
 
独家
Vishay公司已扩大其超薄、大电流电感器IHLE系列的生产,该系...详细>>
中国制造业竞争力虽排名第一,但总体而言,其GDP占比有所下降...详细>>
为了创造一个舒适、整洁有序的办公环境,推进公司日常工作规...详细>>
专题
小度不仅“参加”过脱口秀,“上”过春晚,还一度成为5月与6...详细>>
国家大力推动5G网络的建设中,5G基站电源应用目前面临着怎样...详细>>
2022年二季度,美联储加息愈加激进,但通胀率不降反升,全球...详细>>
Big-Bit会议
热门推荐
随着数据量的不断增长和云计算的普及,数据中心需要处理的数...详细>>
圆形连接器适合恶劣环境应用,但新的汽车设计要求连接器能够...详细>>
点击排行
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任