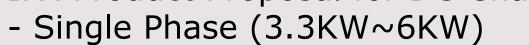
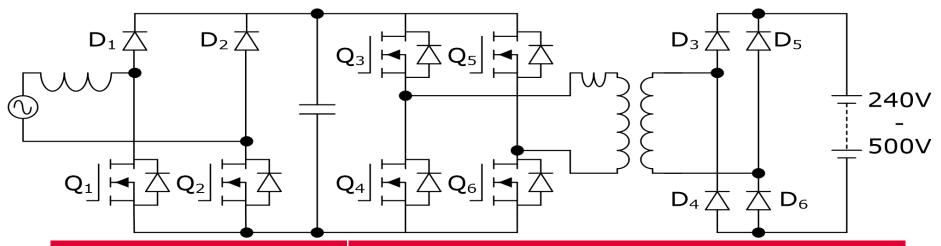

功率半导体在电动汽车充电 桩中的应用 英飞凌 史威

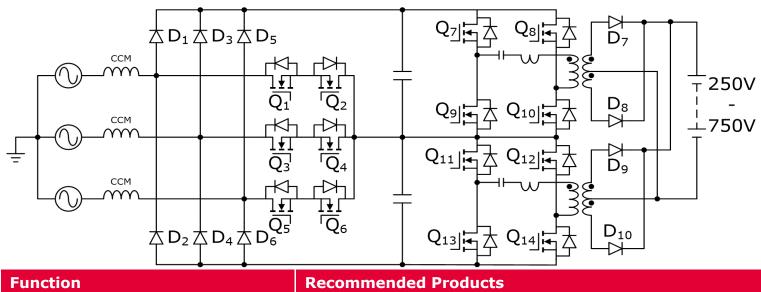
Block Diagram of Charging Station Module


Function	Recommended Products
PFC Stage	CoolMOS [™] CFD2, C7 & P6, Coolsic! [™] SiC G5 650V IGBT Trenchstop5 [™] ; 650V Rapid 1/2 series
HV DC DC Main Stage	CoolMOS™ C7 & CFD2 1200V IGBT H3 series
Analog & Digital Control ICs	ICE3PCSXXG, XMCXXXX
AUX	CoolSET™ F2, CoolSET™ Quasi
DRIVER IC	EiceDRIVER™ 2EDN752XX/2EDN852XX, 1EDI60I 2AF/1EDI60N12AF/1EDI20N12AF (Insulation)


-10-

es AG

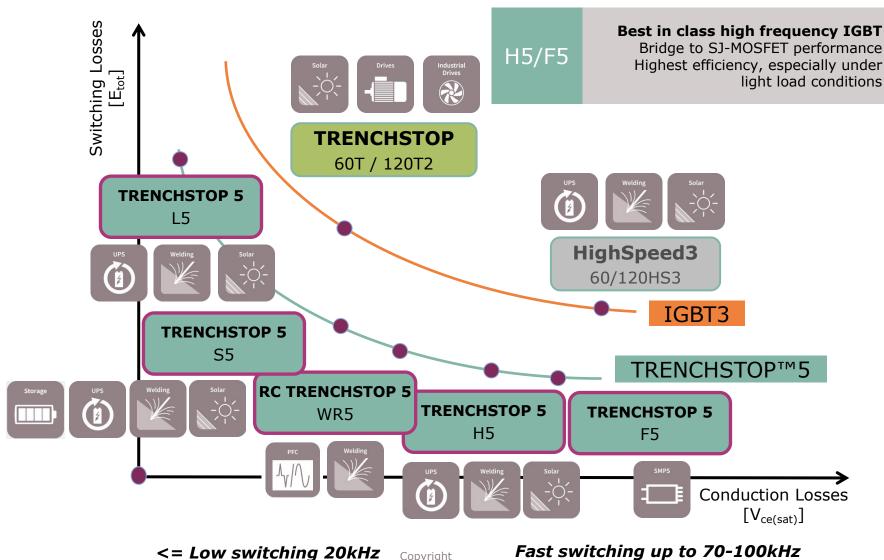
IFX Product Proposal for DC Charging Module


Function	Recommended Products					
Single Phase Input Bridgeless PFC stage						
PFC Switch (Q ₁ -Q ₂)	600V CoolMOS™ P6/C7 series(high efficiency & power density solution); 650V Trenchstop5™ H5/S5 series(price-performance solution);					
PFC Diode (D ₁ -D ₂)	650V CoolSiC [™] G5(high efficiency & power density solution); 650V Rapid 1/2 series(price-performance solution);					
PFC Controller	ICE3PCSXXG;					
So	Soft switching type full-bridge stage					
DC/DC Switch (Q ₃ -Q ₆)	600V CoolMOS™ CFD2(high efficiency & power density solution);					
LLC Controller	ICE1HS01G-1;					
Driver IC (PFC & LLC)						
Low Voltage dual driver	2EDN752XX / 2EDN852XX					
High Voltage driver	Copyright 1EDI60N12AFIyfii包DI20N12AF(Insulation) Technologi					

2016

es AG

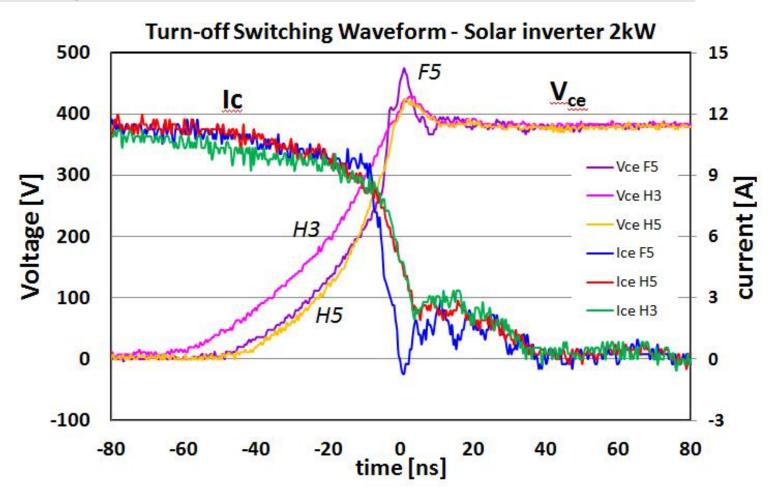
Three Phase Module (12KW/15KW/20kW)


Function	Recommended Products				
Three-phase Input Vienna PFC stage					
PFC switch (Q ₁ -Q ₆)	600V CoolMOS™ C7 series , P6 series CoolSiC™ SiC G5. 650V Trenchstop5™ H5/S5 series				
PFC diode (D ₁ -D ₆)	1200V CoolMOS!™ SiC G5				
PFC Controller	XMC1000 series				
Software	Software switching type full-bridge stage				
dc dc switch (Q_7-Q_{14})	650V CoolMOS™ CFD2				
LLC Controller	ICE1HS01G-1, XMC1000 series				
Driver IC (PFC & LLC)					
Low voltage dual driver	2EDN752XXig/t2EDN852XX				
High voltage driver	1EDI60NT2AF9/ 1EDI20N12AF (Insulation)				

2016 -10-

4

IFX Discrete IGBT Technology Evolution


2016 -10-20

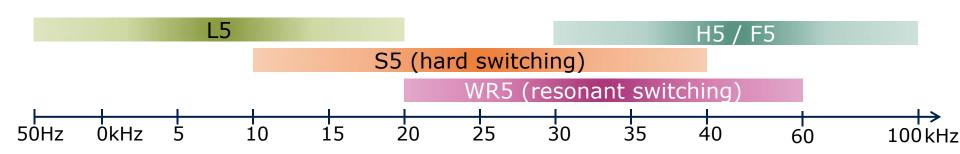
Copyright © Infineon Technologi es AG 2016 All

Fast switching up to 70-100kHz =>

Switching Waveforms H5 and F5 vs H3

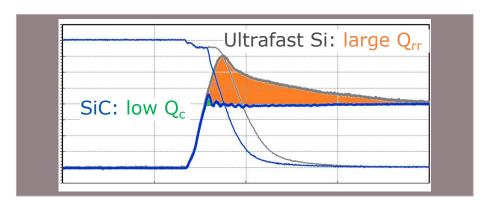
■ H5, F5 shows steeper dI/dt and dV/dt, higher Vcemax, lower turn-off losses than H3!

IFX Discrete IGBT: 650V TRENCHSTOP™ 5



	TO-	220	TO-2	20FP		TO-247-3				TO-247-4				
	H5	F5	H5	F5	EL5*	NL5**	ES5*	WR5	H5	EH5*	F5	EL5*	EH5*	NH5**
8	Х	Х	Х	Х										
15	Х	Х	Х	х										
20	Х	Х					X	Х						
30	Х	Х			х	Х	Х		Х					
40	Х	Х					Х	Х	Х		X			
50							Х	Х	Х	Х	Х		Х	х
75					Х		Х			Х		Х	х	Х

es AG


2016 All

Copyright © Infineon Technologi ** Full rated Rapid 2 diode All other devices have ½ rated Rapid 1 diode

*Full rated Rapid 1 diode

Comparison between SiC Diode and Si Diode

Features

- No reverse recovery charge
- No forward recovery
- Purely capacitive switching

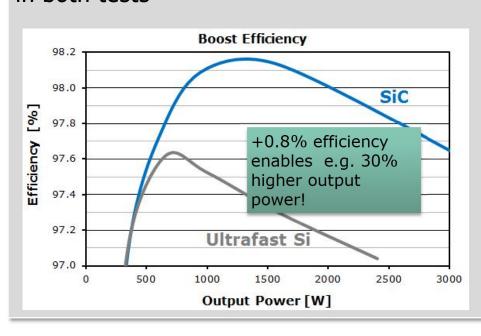
Technical benefits

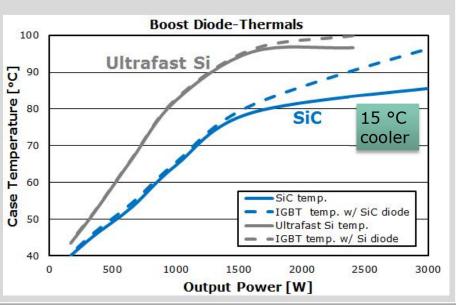
- Low-loss turn-off & low IGBT turn-on loss
- No voltage overshoots
- Switching losses independent from load current, switching speed and temperature

System benefits

- High system efficiency, output power & power density
- High system reliability
- Reduced cooling requirements
- Reduced EMI
- Reduced parts count, no need for snubber circuitry

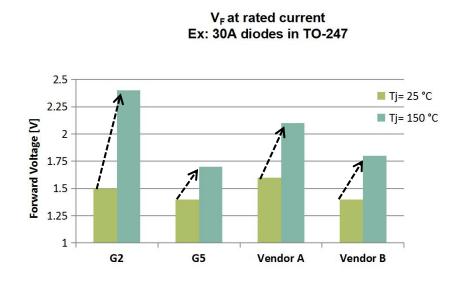
© Infineon Technologi es AG

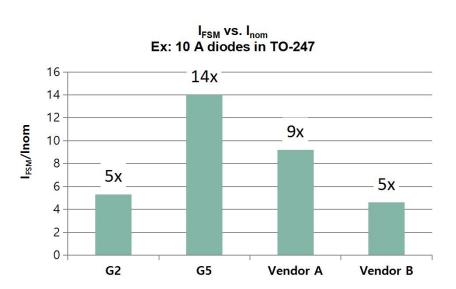

Comparison between SiC Diode and Si Diode


Example:

Boost stage topology at f_{sw} =20 kHz, same 1200V Highspeed3TM IGBT in both tests

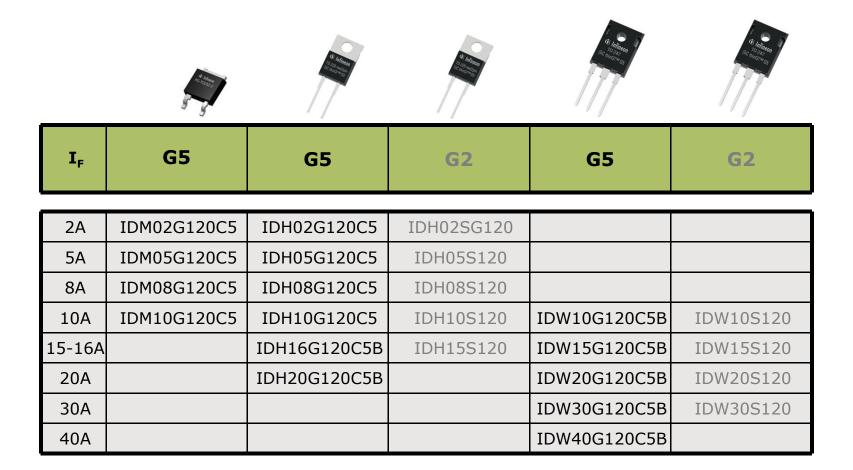
- ⇒ SiC diode compared to Si diode has ...
 - ... higher system efficiency,
 - ... lower device thermals, for
 - ... increased power density and reliability!

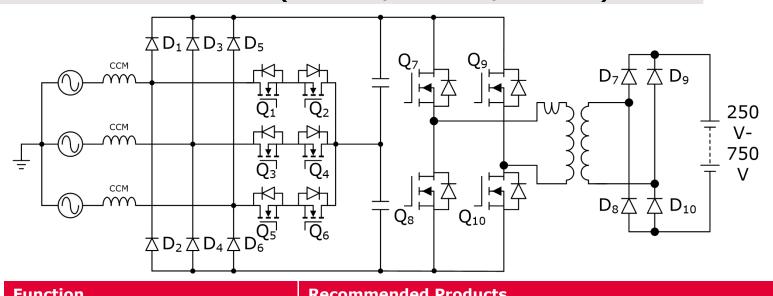

© Infineon Technologi es AG



Specific Product Information

G5 1200V CoolSiC™ Diodes:


- Low VF with low temperature dependency give low static losses over entire load range
- Extended surge current capability for improved reliability


IFX SiC Diode 1200V G5 Product Portfolio

Copyright
© Infineon
Technologi
es AG
2016 All

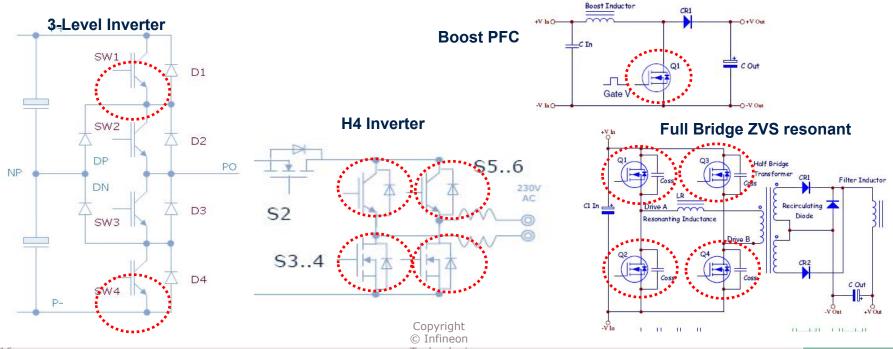
Three Phase Module (12KW/15KW/20kW)

Function Recommended Products					
Three-phase Input Vienna PFC stage					
PFC switch (Q ₁ -Q ₆)	600V CoolMOS™ C7 series , P6 series 650V Trenchstop5™ H5/S5 series				
PFC diode (D ₁ -D ₆)	1200V CoolMOS!™ SiC G5				
PFC Controller	XMC1000 series				
Software	switching type full-bridge stage				
dc dc switch (Q_7 - Q_{10})	1200V IGBT HS3 (in next year, Sic-Mosfet also can be in application)				
dc dc diode (D ₇ -D ₁₀)	IDB30E120				
Driver IC (PFC & LLC)					
Low voltage dual driver	2EDN752XX / 2EDN852XX				
High voltage driver	1EDI60I-12AF / 1EDI20N12AF				

2016 -10-

12

HighSpeed 3 & TRENCHSTOP™5 IGBT Product Spectrum


High Speed3 IGBT for hard switching topologies

UPS, Solar, Welding:

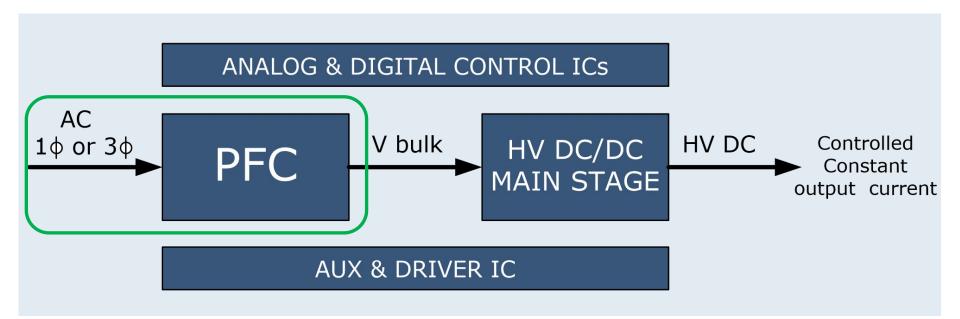
- Frequency range 16kHz and above
- Power factor close to 1
- Low EMI, high efficiency
- Hard commutation

SMPS

- Frequency range < 100kHz</p>
- High dV/dt
- Hard commutation

es AG

Development Trend: EV Wire Charging Station Module



- Increase Output Power (shorten the charging time)
 - Single Phase 6kW->10kW pre module
 - Three Phase 15kW-> 20kW pre module
- Increase Power Density (size of the charging station is fixed)
 - Increase the switching frequency for reduce the passive components, input inductor and isolation transformer, size
- Increase Efficiency (required by operator)
 - 93% @ 15kW full load -> 95% or higher
 - Less power dissipation
 - Longer lifetime for E. Cap
 - Less heatsink for power density
 - Improve reliability of

Copyright
© Infineon
Technologi
es AG

Block Diagram of Charging Station Module

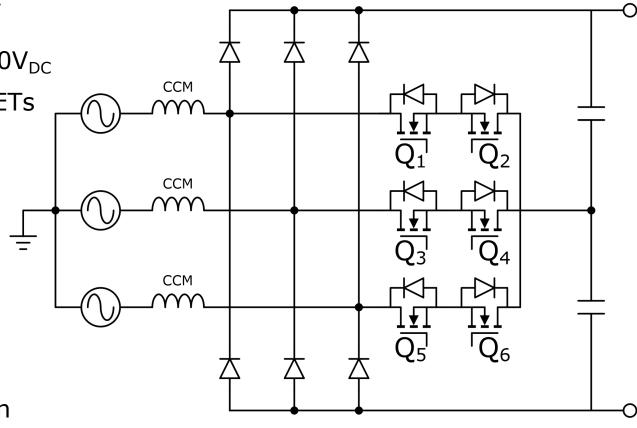
Function	Recommended Products
PFC Stage	CoolMOS™ CFD2, C7 & P6, Coolsic!™ SiC G5, 650V Trenchstop5™ H5/S5
HV DC DC Main Stage	CoolMOS™ C7 & CFD2
Analog & Digital Control ICs	ICE3PCSXXG, XMCXXXX
AUX	CoolSET™ F2, CoolSET™ Quasi
DRIVER IC	EiceDRIVER™ 2EDN752XX/2EDN852XX; 1EDI60N12AF(Insulation)

1 es AG

Design Example: AC->DC Stage

Vienna (three-phase/switch/level) PWM rectifier topology

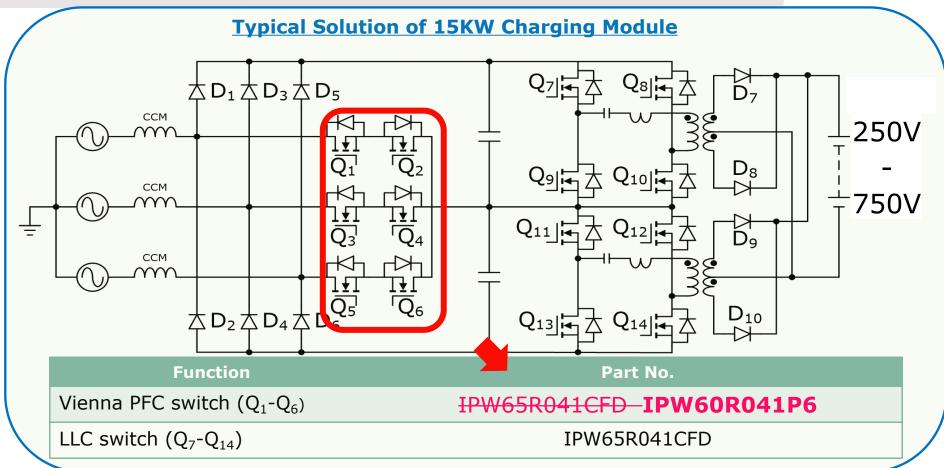
Input Voltage: 380V_{AC} three-phase


Output Voltage: +-400V_{DC}

 $F_{sw} \approx 60 \text{KHz of MOSFETs}$

Calculated Eff. max≈98.6%

Infineon products: IPW60R045C7, IPW60R041P6, IKW50N65H5/ES5; IKW75N65EH5/ES5; IDW40G120C5B


 Infineon possible to integrating bi-direction power switch in one package

2016 All

Recommend P6 in Vienna PFC Rather CFD2

- Merits of IPW60R041P6 to replace CFD2 in Vienna PFC:
 - Similar or better performance by adjustment in R_q value
 - > Better system cost and deliveryight © Infineon

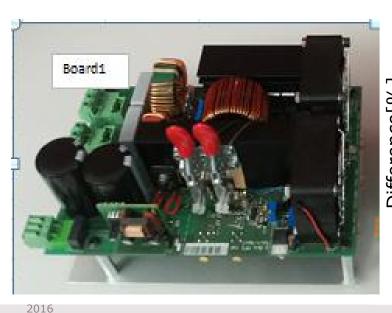
2016 -10-

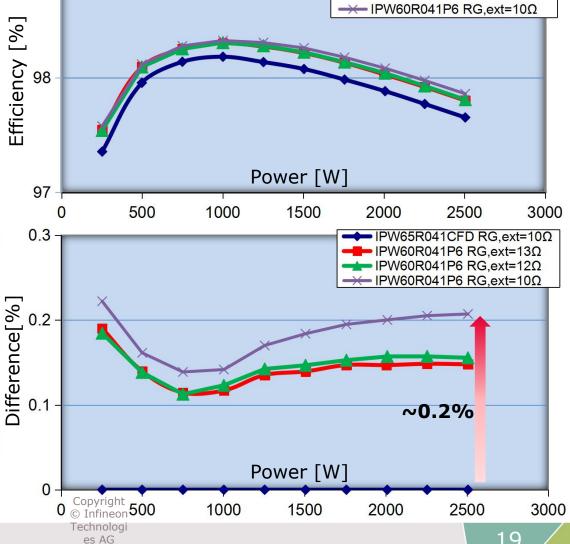
Benchmark of CFD2 and P6

			Remark
P/N	IPW65R041CFD	IPW60R041P6	
Vds (BD)	650	600	CFD: high break down voltage
Rds(on) max. @ 25°C	0.041	0.041	Similar Rdson @ 25°C
Rds(on) @ 150°C	0.1075	0.097	P6: low Rdson @ 150°C
Rated ID @ tc =25°C (A)	68.5	77.5	P6: high current rating
Rated ID @ tc=100°C (A)	43.3	49	P6: high current rating
Qg (nC)	300	170	P6: less driving loss
Qrr(uC)	1.9	19	CFD: low Qrr value
Body diode di/dt (A/us)	900	300	CFD: high di/dt diode
Ciss (pF)	8400	8180	P6: small Ciss
Coss (pF)	400	310	P6: small Coss
Coss eq (pF) energy losses related	288	260	P6: less switching losses
Rth jc (°C/W)	0.25	0.26	Similar thermal resistance
Pacakage	TO-247	TO-247	Same package
Generation	Fast Body Diode	Cost Performance	

Copyright
© Infineon
Technologi
es AG

2016 All

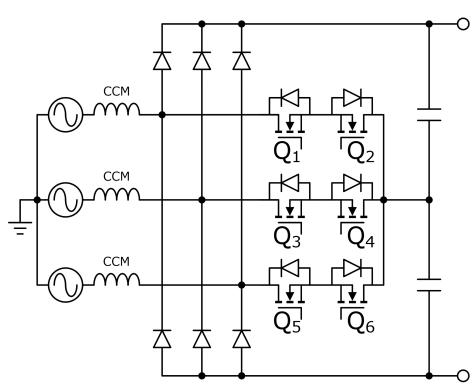



- IPW65R041CFD RG,ext=10Ω

- IPW60R041P6 RG,ext=13Ω

Efficiency Analysis CFD2 VS P6

- Measurement Platform:
- PFC CCM Board
 - Output Power, Pout =2500W
 - Input Voltage, Vin=230V
 - Output Voltage, Vout=400V
 - Switching Frequency, fsw =65kHz
 - Used diode IDH16G65C5
 - Regulated Heatsink @ T=60C



2016 All

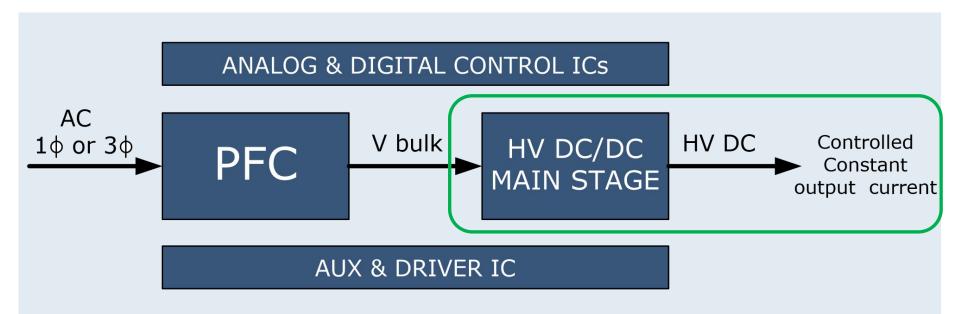
CoolMOS™ 600V P6 Fits for Vienna PFC

For three phase CCM Vienna topology Input voltage is $230V_{ac}$ pre phase and **output voltage is 800V_{dc} (+/- 400V_{dc})**

Vienna Rectifier Characteristic*:

- Low blocking voltage stress on MOSFETs could be used even for high dc-link voltage, i.e., for output voltage 800V values with a blocking voltage capability V_{ds}=600V can be applied
- No current flow occurs through the body diode of MOSFET and/or a possible conduction of the body diode does not have to be suppressed by any other diode lying in series with the MOSFET
 - Significantly higher utilization of MOSFET (conduction of each MOSFET during positive and negative half period of the related phase current), i.e., the **lowest R_{dson} MOSFET** should be used

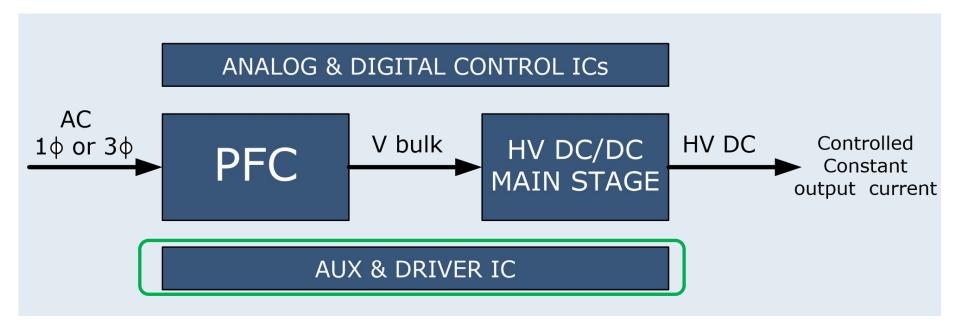
Remark: *Refer to Prof. Kolar^ paper entitled "A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunication Rectifier Modules" (^Prof. Johann W. Kolar is the founder of Vienna rectifier)


Guidelines: Replace CFD2 to P6 in Vienna PFC

- Same gate resistor condition:
 - P6 could give the efficiency gain ~0.2% at light load and ~0.1% at full load
- Guidelines for verification:
 - Check P6 V_{as} ringing as slight fast switching behavior
 - V_{gs} ringing level will increase when I_d increases. Measure V_{gs} ringing under the designed maximum I_d within allowed V_{gs} level (+/-30V)
 - Increase gate resistor to 3-5ohm if $V_{\rm gs}$ level over +/-30V. Example if 10 ohm used in CFD2, 13-15 ohm is recommended for P6
 - After adjustment of Rg, the efficiency of P6 in Vienna PFC should be similar that of CFD2

Easy and fast for replacement

Block Diagram of Charging Station Module

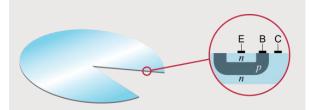

Function	Recommended Products
PFC Stage	CoolMOS™ CFD2, C7 & P6, Coolsic!™ SiC G5 650V Trenchstop5™ H5/S5
HV DC DC Main Stage	CoolMOS™ C7 & CFD2
Analog & Digital Control ICs	ICE3PCSXXG, XMCXXXX
AUX	CoolSET™ F2, CoolSET™ Quasi
DRIVER IC	EiceDRIVER™ 2EDN752XX/2EDN852XX; 1EDI60N12AF(Insulation)

es AG

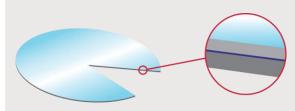
-10-20

Block Diagram of Charging Station Module

Function	Recommended Products
PFC Stage	CoolMOS™ CFD2, C7 & P6, Coolsic!™ SiC G5 650V Trenchstop5™ H5/S5
HV DC DC Main Stage	CoolMOS™ C7 & CFD2
Analog & Digital Control ICs	ICE3PCSXXG, XMCXXXX
AUX	CoolSET™ F2, CoolSET™ Quasi
DRIVER IC	EiceDRIVER™ 2EDN752XX/2EDN852XX; 1EDI60N12AF/1EDI20N12AF(Insulation)

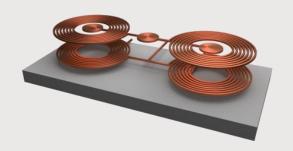

-10-

Driver Overview: Key Technology Performance Parameters


Level-Shift

Junction Isolation

- > FET-based bootstrap circuit (typically 200 Ω).
- Active negative transient immunity (typically -40 V for a period of 100 ns) to prevent latch-up.
- Common mode transient immunity (CMTI) typically 50 V/ns.
- Resilient against positive voltage spikes.


Silicon On Insulator

- \rightarrow PN-based bootstrap diode (typically 40 Ω).
- Negative transient immunity (-50 V for 500 ns) to prevent latch-up.
- Common mode transient immunity (CMTI) typically 50 V/ns.

Galvanic Isolation

Coreless Transformer

- Galvanic isolation.
- Continuous immunity against negative and positive transients due to floating output chip, up to ±1200 V.
- Exceptional common-mode transient immunity (CMTI) of more than 150 V/ns.
- 6 kV basic isolation capabilities.

© Infineon
Technologi
es AG
2016 All

2EDN Key Features Overview

Four Crucial Benefits

_
-
_
וני
-
w
\sim
_
\sim
-
-
\sim

Robustness

rase or design

(
	Key Features	Technical Benefits	Customer Benefits
	5 A souce/sink current 5 ns rise/fall times <10 ns propagation delay precision	> Fast Miller plateau transition> Precise timing	 Higher power efficiency in hard-switching PFC w. SiC diode in half-bridges and SRs
>	True rail-to-rail low ohmic output stages	Low power dissipation in Driver IC	 Cooler Driver IC operation Higher MOSFET drive capability
	4 V and 8 V UVLO options 19 ns propagation delay for both control and enable inputs	 Fast and reliable MOSFET turn-off, independent of control IC 	> Instant MOSFET protection under abnormal operation
>	-10 V robustness on control and enable inputs	› Increased GND-bounce robustness	> " Crucial safety margin to drive pulse-transformer
>	5 A reverse output current robustness	> " Saves switching diodes	Increases power density "BoM savings
>	" 2 independent channels " Excellent channel-to-channel accuracy: 1 ns	, " Option to increase drive current by truly concurrent switching of 2 channels	One IC covering many applications
>	Industry standard pinout and packages	 Straight-forward design up-grades fine on Technologie 	> " Short time-to-market

Technologi es AG 2016 All

2:

2EDN MOSFET EiceDRIVER™ family

Compatible and Better

Compatible

Pinout

&

in Infineon Some Source

Packages: DSO TSSOP WSON

Power: 2-channels, 5A strong, each

Pace: 19ns propagation delay

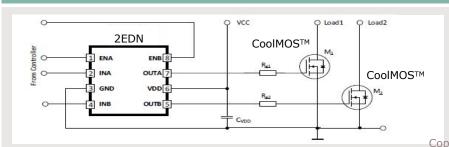
> Precision: 1 ns channel-to-channel

Propagation Delay Matching

> Price: Competitive & Shipping

Better

Truly low-ohmic output stages:

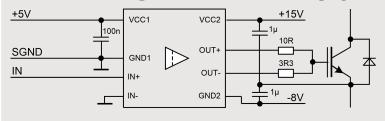

- Least internal power dissipation
- More thermal head-room
- -10V Input robustness:
 - Crucial noise margin to safely drive pulse transformers

- 5A reverse current robustness
 - No need for Schottky clamping diodes
 - Higher power density, lower BoM

Application Schematic

Fast and reliable SuperJunction and Standard-Level MOSFET protection

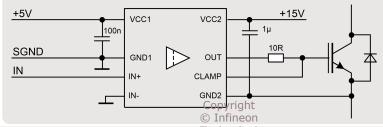
Qualifies for Design Registration



Different variants of 1EDI Compact

Variant with separate source/sink output

Circuit Diagram for IGBT (optional w. bipolar supply)



Variant with output and active Miller Clamp

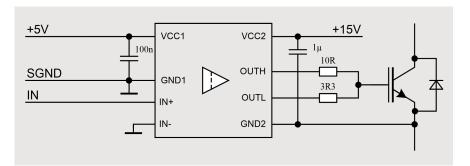
es AG

IGBT Driver: CT 1EDI Compact Family

Key Features

- Single-channel high-voltage driver in a DSO8 150mil package
- Galvanic functional isolation up to offset voltages of 1200V
- Separate source/sink output pins and up to 35V VCC2 supply voltage
- > UVLO for IGBT and MOSFET

Typical Applications



Sample Schematic

Value Proposition

- Optimized cost/performance ratio
- No need for external booster with its typical peak output current of up to 10A
- Enables short dead times due to stable propagation delay with trimmed input filter times

MOSFET: t_{pd} <125 ns t_{flt} =40 ns IGBT: t_{nd} =300 ns t_{flt} =240 ns

> Exceptional CMTI robustness 100 kV/µs

1ED Compact family Separate Output Variants

+15V

⊥ 1μ

- Coreless Transformer Isolated Driver
- Target Output Current 0,5A; 2A; 4A; 6A @ 15V
- Supply voltage up to 35V (uni- & bipolar)
- UVLO for IGBT or MOS
- Features:
 - 1200V functional isolation
 - Propagation delay <100ns or 300ns
 - Input Filter time 40ns or 240ns
 - Propagation delay mismatch <20ns
 - Separated sink/source Output
 - Rail-to-rail output with high current capability Direct drive
 - high T_{a,max} 125°C, T_{j,max} 150°C
 - Small package SO8 150mil with 4mm creepage/clearance

Benefit:

+5V

SGND

☐ Tailored for 1200V IGBT

VCC1

GND1

IN-

- ☐ High Modulation
- □ Robust Design, no cross coupling

VCC2

OUTH

OUTL

GND2

- Low Dead Time
- Saves bypass diode
 - Direct drive w/o booster
- ☐ High reliability
- Low area consumption

1ED Compact family Output with Clamp variants

+15V

⊥ 1μ

- Coreless Transformer Isolated Driver
- Integrated CLAMP output
- Target Output Current for OUT & CLAMP™ 1A; 2A; 3A @ 15V
- Supply voltage 20V (unipolar only)
- UVLO for IGBT

Features:

- 1200V functional isolation
- Propagation delay <100ns or 300ns
- Input Filter time 40ns or 240ns
- Propagation delay mismatch <20ns
- RR output with high current capability
- high T_{a,max} 125°C, T_{j,max} 150°C
- Small package SO8 150mil with 4mm creepage/clearance

Benefit:

+5V

SGND

- ☐ Tailored for 1200V IGBT
- □ High Modulation

VCC1

GND1

☐ Robust Design, no cross coupling

VCC2

OUT

CLAMP GND2

- Low Dead Time
- ☐ Direct drive with out booster
- ☐ High reliability
- Low area consumption

Copyright
© Infineor
Technologi
es AG
2016 All

Part of your life. Part of tomorrow.

