广告
广告
基于多端口串行Flash的条形LED显示屏控制
您的位置 资讯中心 > 技术与应用 > 正文

基于多端口串行Flash的条形LED显示屏控制

2012-08-14 14:33:26 来源:华强LED网

【哔哥哔特导读】本文在分析现有各种条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash存储器的LED 显示控制系统。 利用单片机的SPI接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以“DMA”方式直接输出至超长条形LED 显示屏。

摘要:  本文在分析现有各种条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash存储器的LED 显示控制系统。 利用单片机的SPI接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以“DMA”方式直接输出至超长条形LED 显示屏。

关键字:  LED 显示屏,  Flash存储器

LED 显示屏应用中,超长条形LED 屏是非常广泛的一种形式,其特点是长度“特别长”而宽度窄。 超长LED 显示屏目前没有明确的定义,可以将其水平方向的点数定义为≥2 048 比较合适。

以由1 /4 扫描P10 单元板(点间距10 mm) 组成的超长条形LED 显示屏为例,当水平方向的点数为2 048 时,其水平方向物理尺寸为20. 48 m. LED 屏的宽度(垂直方向) 点数一般为16、24 和32 点,最多不超过64 点,应用中以能够显示一行各类字体的汉字为主。 为保证刷新率,在对超长LED 显示屏的控制上,要求在规定时间内送出更多数据,普通的LED 显示屏控制卡很难实现控制要求。

本文在分析现有各种条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash存储器的LED 显示控制系统。 利用单片机的SPI接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以“DMA”方式直接输出至超长条形LED 显示屏。

1 常用单元板内部串行移位寄存器连接方式

图1 为3 种常用单元板内部串行移位寄存器连接方式。 其中图1(a) 为单元板74HC595 与LED发光管点阵连接关系及简化表示电路。 LED 显示屏单元板内部使用的串行移位寄存器一般为74HC595、MBI5026 或MBI5026 兼容芯片,而MBI5026 可以看成是由两片74HC595 级联构成,为恒流源驱动模式,更适合LED 的驱动。

图1(b) 、(c) 、(d) 分别为P10、P16、F3. 75 或F5. 0单元板的连接方式。

图1 3 种常用单元板内部串行移位寄存器连接方式

2 超长LED 显示屏面临的问题及解决方案

目前,市场上大量的门头屏( 条形LED 显示屏)是LED 显示屏应用最广的一种形式。从技术上来说,门头屏的水平方向点数从256 点至数千点,而高度一般不超过64 点。随着市场需求和显示精度的提高,数千点长度的超长LED 显示屏需求量在不断加大。 普通的LED 显示屏控制卡难于满足刷新率的要求,以在长度上像素点是4 096 的F3. 75 LED 显示屏为例,设刷新率为60 Hz,其SCK时钟周期至少为106 /60 /16 /4 096 = 0. 254 μs = 254 ns.

解决超长LED 显示屏数据输出的方法有两种:一是选择高性能嵌入式处理器和FPGA 芯片,该方法控制卡成本较高;二是巧妙应用单片机上的特殊功能部件并优化组织数据算法,这种方法成本很低。本文采用的就是第2 种方法,通过优化算法将数据预先写入多端口串行Flash 存储器SST26VF016B 中,利用STC12C5616 单片机的SPI部件产生高速可控SCK 时钟,将多端口串行Flash存储器中的显示数据以“DMA”方式直接输出至超长条形LED 显示屏中,满足超长LED 显示屏的显示要求。

超长LED 显示屏高度一般不超过64 点,若控制1 /16 扫描单色LED 显示屏,SST26VF016B 存储器的4 位数据端口正好满足LED 显示屏数据口宽度的需要。图2 为SST26VF016B 存储器的控制时序,CS 为SST26VF016B 存储器的片选端,所有对存储器的操作都要在CS 为低电平期间进行;SCK 为时钟线,当空闲模式时,SCK 信号可以处于低电平状态( MODE 0),也可以处在高电平状态( MODE 3) ; SIO( 3∶ 0) 为4 位数据端口,在数据传输时,先传字节的高4 位,再传字节的低4 位。从存储器的控制时序可以看出,对存储器的控制按照命令字、24 位存储地址、虚拟字节、数据字节0 到数据字节N 的顺序发送。存储器的命令字可以实现对存储器进行片擦除、扇区擦除、单字节读写、连续字节读写等功能,完全能够满足超长LED 显示屏对存储器的容量和控制方式的要求。

STC12C5616 是STC 公司推出的高速1T 单片机,时钟频率可达30 MHz 以上,其内部集成一个高速串行通信接口部件( 即SPI 接口)。当STC12C5616 的SPI 部件采用主模式工作时,其SPI时钟输出频率( fclk) 可以达到晶振频率( fosc) 的1 /4 倍,并且可以灵活配置它的时钟相位和时钟极性,既满足对SST26VF016B存储器控制的要求,又满足超长LED 显示屏对时钟的要求。

3 超长LED 显示屏控制卡电路设计

利用串行Flash 存储器SST26VF016B 的多位数据口存储器和STC12C5616 单片机的SPI 部件能产生高速SCK 时钟的特点,将显示数据从串行Flash存储器旁路输出至LED 显示屏,电路如图3 所示。

图3 超长LED 显示屏控制卡电路图。

当显示屏的动态刷新速率达到50 次/s 时,在1 /16 扫描的LED 显示屏上,一行显示时间要小于1 /50 /16 s,即1. 25 ms. 在控制卡设计上,当fosc =22 MHz时,串行Flash 时钟频率fclk = 1 /4 fosc =5. 5 MHz,故4 096 个CLK 时钟所需时间为4 096 × 1 /(5. 5 × 106 ) s = 0. 744 ms,加上采用SQI协议发送存储器指令和地址的时间后也小于1. 25 ms,故在图3 中,单片机STC12C5616 的外部时钟选择22 MHz 时钟,就可以保证在SQI 协议方式下实现4 096 超长显示屏的显示。

单片机STC12C5616 的外部时钟选择22. 118 4 MHz,便于串行口波特率的精确控制;引脚P3. 0和P3. 1为UART 接口,通过通信接口芯片MAX232 芯片实现控制卡和PC 机之间的通信连接;引脚P2. 0 ~ P2. 3为4 位数据线,该数据线一方面连接存储器SST26VF016B 的4 位数据口,另一方面通过74HC245 驱动后连接到LED 单元板输出接口的数据线上。在控制卡上设计有2 个单色LED单元板输出接口,接口J1 使用数据线D0和D1,接口J2 使用数据线D2和D3; 引脚P1. 7为SPI 时钟输出,SPI 时钟输出线同时连接到串行Flash 存储器SST26VF016B 和LED 单元板的时钟输入;引脚P1. 4为串行Flash 存储器SST26VF016B 的片选信号; 引脚P3. 5为LED 单元板的数据锁存信号;引脚P3. 7为LED 单元板的使能信号输出;引脚P1. 0 ~P1. 3为LED 单元板的行选择信号输出;J1 和J2 连接头用来连接显示屏在高度方向上的LED 单元板,以符合门头屏64 点高度要求。

该电路的设计可以灵活地在单片机、串行存储器和LED 单元板相互之间实现3 种不同的数据访问模式,分别是:

(1) 单片机和存储器之间的正常访问。

由图3 可以看出,单片机STC12C5616 和串行Flash 存储器SST26VF016B 之间的连接是参照数据手册进行连接的,可以实现正常的数据存取,同时该数据也会进入LED 单元板上的移位寄存器缓冲区,但只要LED 单元板上的数据锁存RCK 没有得到有效信号,进入LED 单元板的数据是不显示出来的无效数据。

(2) 单片机和LED 单元板之间数据通信。

将单片机引脚P1. 4置高电平,即将串行Flash存储器的使能端无效,这时存储器的数据端口呈高阻状态,单片机和LED 单元板之间数据通信就不会受到存储器数据口的影响,可以将单片机的数据正常输出到LED 单元板上。

(3) 存储器和LED 显示屏之间的数据传输。

首先采用第(1) 种模式,单片机先向串行存储器输出命令字、存储地址和虚拟字节,然后将单片机的数据口P2. 0 ~ P2. 3全部置高电平,通过SPI 时钟从串行存储器读取显示数据,同时以“DMA”方式进入LED 单元板,当读取完一行数据后,在LED单元板上的数据锁存端RCK 上产生有效信号,就可以显示该行数据。当采用这种模式时,一定要将单片机STC12C5616 的引脚P2. 0 ~ P2. 3设置为“弱上拉”模式。

4 超长LED 显示屏显示程序设计

在1 /16 单色LED 显示屏硬件电路设计中,74HC595 采用直通方式连接。根据直通方式特点,预先对单色显示数据进行优化组织,将组织后的显示数据预先存放在串行Flash 存储器SST26VF016B 中。如图4 所示,单片机输出显示每行数据时按“输出数据→送移位脉冲→地址加1”的顺序重复进行,显示完一行后,RCK 锁存显示,通过ABCD 切换行选通线。

图4 1 /16 扫描单色F3. 75 或F5. 0 单元板( 64 × 32 点) 连接方式。

|

以LED 显示屏的水平方向点数为4 096 点为例,其显示一帧数据的程序代码如下:

woid Display(unsigned long begin_Addr)

{

unsigned char Ln

,Bv = 1;

unsigned int Data_Length,Lw = 4096;

unsigned long Addr;

Data_Length = Bv* Lw

) ;

for ( Ln = 0; Ln < 16; Ln + + )

{

Addr = Begin_Addr + Ln* Data_Length;

CS = 0;

SendSQI_Byte( 0x0B) ; / /送读命令

/ /送3 个字节地址

SendSQI_Byte( ( Addr > 16) &0xff) ;

SendSQI_Byte( ( Addr > 8) &0xff) ;

SendSQI_Byte( ( Addr&0xff) ;

SendSQI_Byte( ( 0xff) ; / /送虚字节

P2 = P2 |0x0f;

SPCTL = 0xd0; / /允许SPI 接口

SPDAT = 0xff; / /启动第1 次SPI 发送

Data_Length = ( Data_Length> 3) - 1;

while( Data_Length! = 0)

{ / /SPI 时钟每次传输8 个脉冲

while( ( SPSTAT&0x80) == 0) ;

SPSTAT = 0x80; / /清接收标志

SPDAT = 0xff; / /启动SPI 发送

Data_Length -- ;

}

while( ( SPSTAT&0x80) == 0) ;

SPSTAT = 0x80; / /清接收标志

SPCTL = 0x90; / /禁止SPI 接口

CS = 1; /* disable devicce * /

EN = 0;

RCK = 1; RCK = 0;

PI = ( ( P1&0xf0) | Ln

) ;

EN = 1;

}

}

在设计程序时,仅在换行时关闭显示屏,避免它产生余辉,其余时间都点亮。在该程序中,Bv为数据线在垂直方向使用595 的组数;Lw为LED 显示屏水平方向像素点数;Ln为当前LED 显示屏显示数据行号。 当显示数据时,采用存储器和LED 显示屏的数据输出模式,单片机先向串行存储器输出“读数据”命令字“0x0B”,然后输出24 位地址和虚拟字节,再使单片机数据口输出高电平,就可以根据LED 显示屏的长度输出SCK 脉冲。送完一行数据后,禁止SPI 接口,RCK 锁存信号有效,切换至下一行,按重复步骤继续输出显示数据。

5 测试

经过测试后,显示屏显示正常,没有抖动情况,使用逻辑分析仪测试了其刷新率,如图5(b) 所示,信号A 的电平宽度表示显示1 行所需要的时间,其宽度为1. 036 16 ms,显示1 帧的时间为16 ×1. 036 16 ms≈16 ms,所以LED 显示屏的刷新率为1 /16 ms = 62. 5 Hz. 而当LED 显示屏的刷新率大于50 次/s 时,就可以满足设计要求,故本设计能够满足正常显示要求。通过测试SCK 信号,如图5(a)所示,可以看出SCK 信号每8 个脉冲1 组,每组之间的时间间隔仅为570 ns,该时间主要消耗在判断SPI 数据传输完成标志和循环控制上。

图5 LED 屏信号测试

6 结论

本文提出了基于多端口串行Flash 存储器的LED 显示控制系统,利用单片机的SPI 接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以“DMA”方式直接输出至超长条形LED 显示屏。

其制造成本低廉,根据本文程序及逻辑分析仪得到的时序图可知,该方法可以控制4 096 × 64 点阵单色LED 显示屏,在超长显示屏市场上有很好的应用前景。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;

阅读延展
LED 显示屏 Flash存储器
  • 两大协会集结六大产业 共创「声光视讯显元宇宙博览会」

    两大协会集结六大产业 共创「声光视讯显元宇宙博览会」

    为助力全国统一大市场建设,加快培育外贸新动能,LED CHINA、UDE国际半导体显示博览会和国际音视频智慧集成展(深圳)共同携手声、光、视、讯、显、元宇宙六大产业界的企业伙伴们互通合作,发挥优势互补,于2月26日-28日在深圳福田会展中心搭建全生态全产业链的国际贸易平台。

  • LED照明智能化与可见光通信相关技术发展

    LED照明智能化与可见光通信相关技术发展

    正如“智能电网”发展方向与前景一样,LED 照明智能化将成为新一代高效多功能的智能化照明发展方向。

  • 低噪声+高功率密度 电源行业先进器件和应用

    低噪声+高功率密度 电源行业先进器件和应用

    ADI公司专为汽车设计的电源产品覆盖汽车座舱电子和信息娱乐系统、车辆自动驾驶和安全、汽车LED驱动器以及电池管理和动力总成等电气化系统,确保其符合ASIL框架。不同的产品可以实现不同的功能,包括电压调节、直流转换等

  • 第三届紫外LED国际会议暨长治LED产业发展推进大会闭幕

    第三届紫外LED国际会议暨长治LED产业发展推进大会闭幕

    9月14日,“第三届紫外LED国际会议暨长治LED产业发展推进大会”在山西长治胜利闭幕。会议由长治市人民政府、中关村半导体照明工程研发及产业联盟(CSA)主办,长治市发展和改革委员会、长治国家高新技术产业开发区管委会承办。

  • 第三届紫外LED国际会议暨长治LED产业发展推进大会盛大开幕

    第三届紫外LED国际会议暨长治LED产业发展推进大会盛大开幕

    9月13日,以“构建紫外新兴业态、促进科技成果转化”为主题的“第三届紫外LED国际会议暨长治LED产业发展推进大会”在山西长治盛大开幕。会议由长治市人民政府、中关村半导体照明工程研发及产业联盟(CSA)主办,长治市发展和改革委员会、长治国家高新技术产业开发区管委会承办。

  • 纳晶科技携多款全球首发量子点产品亮相第四届国际半导体显示博览会

    纳晶科技携多款全球首发量子点产品亮相第四届国际半导体显示博览会

    近日,2023第四届国际半导体显示博览会(UDE 2023)在深圳隆重开幕,本次展会汇聚1000余家展商,聚焦Mini/Micro LED、OLED、QLED、激光显示、微显示等新型显示技术,纳晶科技携多款全球首发顶尖量子点显示技术与产品,惊艳亮相第四届国际半导体显示博览会,充分向全球展示了自身行业领先的创新实力及技术领导力。

  • 纳晶科技全球首发300PPi喷墨打印AM-QLED样机

    纳晶科技全球首发300PPi喷墨打印AM-QLED样机

    近日,纳晶科技全球首发最高分辨率(300PPi)的喷墨打印主动式矩阵量子点发光二极管(AM-QLED)显示屏,这意味着纳晶AM-QLED技术量产进程又迈出了里程碑式的一步。

  • 连接线加工步骤都有哪几步 所有过程都出来了

    连接线加工步骤都有哪几步 所有过程都出来了

    连接线顾名思义就是一种线缆,电子连接线便是用以连接电子设备与设备的线缆,例如台式电脑的显示屏与主机,也是需要使用到电子连接线的,然而,你可晓得电子连接线加工步骤都有哪几步吗?所有过程都出来了。

  • LED显示屏应用需求与驱动IC技术路线

    LED显示屏应用需求与驱动IC技术路线

    led显示屏不断发展,驱动IC占据了重要的位置,驱动IC与逻辑IC以及MOS开关组成的周边IC共同作用于LED显示屏的显示功能。且决定了其呈现的效果。随着LED显示屏三高需求明显,来源于应用端需求驱动IC逐渐迈入了驱动IC高集成化的技术路线。

  • 发光半导体应用愈加普遍 揭两者间性质

    发光半导体应用愈加普遍 揭两者间性质

    说起发光半导体材料,实际已经出现在我们的日常生活里,最常见的莫过于手机以及电视机的OLED显示屏,伴随着这些智能家电与电子产品的兴起,发光半导体应用愈加普遍,不过,有个问题始终困扰着许多小伙伴,看完以下内容就知道了。

  • 摆脱海外IC 华为完全自主IC已投入生产

    摆脱海外IC 华为完全自主IC已投入生产

    驱动IC芯片对于一块显示屏来说是非常重要的,现如今国内产商驱动IC芯片市场占有率不到1%。但国内多家驱动IC企业已加强了自研。生产做到完全去美化,摆脱对海外IC的依赖。

  • 几点说明TypeC接口便捷好用之处

    几点说明TypeC接口便捷好用之处

    但电子产品都打搭载了USB 全能Type-C接口,无论是娱乐,还是办公都能跟便捷,效率更高。如智能机与显示屏一线智联时,手机可便捷的操控电脑软件,使用随时随地操作办公。

  • 解读ARM7内核微控制器以太网接口电路

    解读ARM7内核微控制器以太网接口电路

    嵌入式主控模块采用了基于ARM7TDMI-S内核的微控制器LPC2148,集成度非常高。内嵌40kB的片内静态RAM和512kB的片内Flash存储器,片内集成ADC、DAC转换器,看门狗,实时时钟RTC,2个UART,2个I2C还有SPI等多个总线接口,及USB2.0全速接口。

  • 基于EPG3231和闪存的声音播放器设计

    基于EPG3231和闪存的声音播放器设计

    提出一种在单片机系统中比较简单地使用大容量NAND Flash存储器的方法。

  • 瑞萨电子发布应用广泛的少管脚MCU

    瑞萨电子发布应用广泛的少管脚MCU

    高级半导体解决方案领军厂商瑞萨电子(中国)有限公司(以下简称“瑞萨”)宣布推出 R7F0C80112ESP/R7F0C80212ESP 低功耗MCUs,配备小容量Flash存储器,采用10管脚SSOP封装,可以满足消费类电子,健康器械以及工业设备中对小容量单片机的需求。

  • 瑞萨电子推出带有嵌入式40 nm Flash存储器

    瑞萨电子推出带有嵌入式40 nm Flash存储器

    高级半导体解决方案领导厂商瑞萨电子株式会社(TSE:6723)今天宣布推出面向汽车车身应用的RH850/F1x系列32位微控制器(MCU),它是RH850系列汽车MCU的首款产品,配置了采用业内最先进40 nm工艺的嵌入式Flash存储器。

  • 基于DSP全数字化语音系统的设计方案

    基于DSP全数字化语音系统的设计方案

    本文就是用F206对MSM6588语音芯片进行录音、放间控制,用FLASH存储器AM29F040B进行语音数据存储,用差分线驱动器和接收器SN75LBC180在RS-485总线网络上传输语音数据,从而满足全数字化语言教学实验室对学生机提出的上述要求的。

  • 进军CPU领域 三星胜算有多大

    进军CPU领域 三星胜算有多大

    众所周知,三星电子是世界IT领域第一大跨国巨头,近年来虽然在白电领域销售形势不很乐观,但与半导体关联度较高的黑电产品却逆世界经济形势而增长,发展态势看好。在半导体生产线建设方面更是连连出手,先是在西安准备投巨资建立Nand Flash存储器生产线,现又宣布向CPU领域进军。面对众多世界强手的激烈竞争,三星从生产存储器跨到CPU,前景如何?三星有多少胜算和机会?

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任