在短路与开路间 这两样互感器各有不同禁忌
2021-09-30 10:56:03 来源:电工电气技术 点击:5107
大家都清楚电压互感器不可以短路运行,而电流互感器不可以开路运行,电压互感器一旦短路或是电流互感器一旦开路运行都将毁坏电压互感器或是造成风险。
从结构设计上讲,大家都了解,不论是电压互感器或是电流互感器全是变压器,仅仅是主要参数不一样。那麼为何一样是变压器,却是一个不可以短路运行一个不可以开路运行呢?

变压器原理图
一切正常运转时,电压互感器二次磁石电磁线圈等同于开路,特性阻抗ZL十分大,若二次回路短路时,特性阻抗ZL快速减少到绝大多数为零的状况,此时二次回路会造成挺大的短路电流量,将毁坏二次工业设备乃至威协生命安全。电压互感器能够在二次侧安裝刀闸以维护其本身不因二次侧短路而毁坏。在有可能的情形下,一次侧也应安装刀闸以保护高压电力网不因电压互感器髙压磁铁线圈或电力线出现故障而危害一次系统软件的安全性能。
电流互感器在正常工作时,特性阻抗ZL并不算太大,等同于二次磁石电磁线圈在短路情况下运行。二次电流量造成的磁通量势对一次电流量造成的磁势起消磁功效,励磁调节器电流量甚小,电感线圈中的总磁通量并不算太大,二次绕阻的感应线圈电流量不超过几十伏。假若二次侧开路,二次电流量等于零,去磁功效消退,可是一次磁石电磁线圈的ε1维持不会改变,其一次电流量彻底变成励磁调节器电流量,造成电感线圈内磁通量Φ猛增,电感线圈处在极为饱和,再加上二次绕阻的线圈匝数有不少,便会在二次绕阻两边造成很高(乃至可以达到数千伏)的工作电压,不仅很有可能毁坏二次绕阻的绝缘套管,并且将明显损害生命安全。因而,电流互感器二次侧开路是一定不允许的。
电压互感器和电流互感器基本原理上全是变压器,电压互感器关注工作电压的转变,电流互感器关注电流量的转变。至于为何一样是变压器,电流互感器却不可以开路运行,电压互感器又不可以短路运行?原因在这里。
在正常运行时,ε1和ε2维持不会改变。电压互感器一次侧连接起来在配电线路中,工作电压比较高,电流量十分小,正常运行时二次侧的交流电也十分小,几近0,在二次回路中与开路无限特性阻抗导致一个相对均衡。当二次侧特性阻抗快速减少到短路时,由于ε2维持不会改变,一定会造成二次电流量快速扩大,毁坏二次磁石电磁线圈。
一样的道理,在正常运行时,ε1和ε2维持不会改变。电流互感器一次侧相互连接在配电线路中,电流量比较高,工作电压十分小,正常运行时二次侧的电压也十分小,几近为0,在二次回路中与短路无限小特性阻抗形成均衡。当二次回路特性阻抗快速扩大到开路时,二次电流量快速降至0,一次电流量所有转换为励磁调节器电流量,造成磁通量快速扩大至饱和毁坏电压互感器。
因此相同的变压器,运用不一样,結果也会不一样。
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
随着智能电网和分布式新能源的迅猛发展,配电系统对电流测量装置提出了更高要求。罗氏线圈凭借其结构灵活、安装便捷的特点,在不规则母排和有限空间中展现出独特优势。
随着智能电网和配电自动化技术的不断发展,对电流测量设备的准确性、灵活性及可靠性的要求日益提高。传统开合式电流互感器具有较高的测量精度,但其结构刚性大,尺寸较大,难以满足狭小空间的安装需求;而罗氏线圈由于其柔性结构,具备较好的安装适应性,但在低电流条件下误差较大,输出稳定性不足。
本文探讨漏抗对开合式电流互感器性能的影响。
随着智能电网和配电自动化技术的飞速发展,适用于电网改造的传统电流传感器在测量准确度、安装灵活性及环境适应性方面的局限性逐渐显现。为了应对这一挑战,本文提出了一种新型柔性电流互感器的设计方案。
本文探讨了电流互感器取能方式在新能源与智能电网建设中的应用,重点研究了普通电流互感器和快速饱和取能互感器的设计原理、输出特性及成本对比。
配电柜内的母排规格多样,电流范围广泛,且标准不一,导致需要多种规格的开合式电流互感器。

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论