账号
密码
下次自动登录 进入商务室
立即注册忘记密码?
以特斯拉为代表的电动汽车竞相使用NCA、NCM811或NCM622高镍三元材料作为锂电池正极材料,然而这种高镍层状的正极材料存在安全性的问题,加拿大光源储能组的周霁罡博士以及化学成像线站的王建博士与厦门理工大学的路密副教授,首次将复杂复合电极热失控前后的相分布进行单个电极颗粒层面的成像。
电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。
半桥式变压器开关电源与推挽式变压器开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
智能手机正在向超大屏、高分辨率、超长待机时间演进。这些功能都会加快电池的使用。因此,客户需要更快的充电速度。
稳压电源的分类方法繁多,按输出电源的类型分有直流稳压电源和交流稳压电源;按稳压电路与负载的连接方式分有串联稳压电源和并联稳压电源;按调整管的工作状态分有线性稳压电源和开关稳压电源。
碳化硅(SiC)和氮化镓(GaN)是宽禁带材料,提供下一代功率器件的基础。与硅相比,SiC和GaN需要高3倍的能量才能使电子开始在材料中自由移动。因而具有比硅更佳的特性和性能。
线性充电器和开关充电器广泛应用于多种应用:助听器、智能手表、传感器节点、手机、笔记本电脑等。每当使用可充电电池时,都需要一个充电器。
Q值是衡量电感器件的主要参数,是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。
移动电源用于智能手机或平板电脑等便携式电子产品的流行个人装置,其时尚而薄的外形意味着有限的电池容量。移动电源是便携式二次电池,用于在无法使用交流电源时存储能量。
对任何可佩戴式或物联网(IoT)设计(如智能手表、数据记录仪、传感器、家庭网关等)而言,加快产品上市进程均是关键要求。许多设计人员都在寻求最简单最快捷的方式来实现这些系统。该挑战看似不难应对,但果真如此吗?
这是设计工程师在数个场合问到的问题。其中一个场合就是在设计电源时。很多时候,电源设计都有些事后诸葛亮的味道。
精密的输出电流测量被更精确地读取,因为它克服了由于板间的接地压降和传输线的电压损耗造成的误差。
本文介绍了影响开关电源效率的基本因素,可以以此作为新设计的准则。我们将从一般性介绍开始,然后针对特定的开关元件的损耗进行讨论。
锂离子电池化成过程中SEI膜的形成过程,具体而言包括如下四个步骤。
FPGA系统的复杂度越来越高,所以FPGA必须采用适当的电源管理技术, 来设计针对FPGA系统的电源。
便携电话、平板电脑等联网设备(物联网)的广泛使用极大地提升了世界范围内的无线通信流量。相应的,这也对通讯基础设施——如基站、远端频射单元(RRUs)、小型基地台(蜂窝)等——提出了增容要求,以处理更多的信息流量。
多通道加电和断电排序已经成为很多电源系统的必备功能。随着这些系统的复杂度不断增加,工程师必须针对更加严密紧凑的计时技术规格进行设计,并且在反向序列出现时具有断电功能,并且能够处理大量的电源轨。
2018年无线充电变得很火爆,越来越多的整车厂有车载无线充电的需求。想进入这个市场,需要好的方案。本文介绍的方案平台,包含硬件参考设计,软件例程,加上周立功完善的技术支持,能让您的无线车充设计变简单。
作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚。
我们知道,铅酸蓄电池在制造期间,正极板阿尔法氧化铅和贝塔氧化铅是均匀混合的,而不是类似于树枝和树叶的状态。因此,一些处于表面的阿尔法氧化铅参与放电生成贝塔氧化铅是必要的。
基于ES7P2023芯片的显示触控一体化方案介绍—硬件篇
锂离子电池,即使用能可逆嵌入、脱出锂离子的嵌入化合物作为正极、负极的二次电池:充电时,正极中的锂离子从正极活性材料中脱出,嵌入负极活性材料中。
本文讲述的是在一定范围的输入电压下,计算电感值以维持所需纹波电流和所选导通模式的方法,并介绍了一种用于计算输入电压上限和下限模式边界的数学方法
结合国内外历史和当前的用词习惯,本文对锂电池在研究和开发中常见的定义、术语、名词进行了归纳、整理,部份容易引起歧义的进行了解读。
文中通过采用RC或LC吸收电路对二极管蓄积电荷产生的浪涌电压采用非晶磁芯和矩形磁芯进行磁吸收,从而解决了开关电源浪涌电流的产生以及抑制问题。