广告
广告
全彩LED显示的控制系统节能管理方法
您的位置 资讯中心 > 技术与应用 > 正文

全彩LED显示的控制系统节能管理方法

2011-05-16 11:53:24 来源:网络

【哔哥哔特导读】全彩LED显示屏的模组供电方式普遍采用低压大电流开关电源模块输出并联的总线供电方式。由于开关电源输出的电流大,变压器铜损大,整个的电源转换效率低(满负载只能做到75%以内)。本文推荐模组内电源采用若干小型开关电源分布式供电方式,以提高开关电源的能量转换效率。譬如:交流220V总线输入、最大输入功率是35W、输出可调电压的开关电源模块效率可以达到86%以上。

摘要:  全彩LED显示屏的模组供电方式普遍采用低压大电流开关电源模块输出并联的总线供电方式。由于开关电源输出的电流大,变压器铜损大,整个的电源转换效率低(满负载只能做到75%以内)。本文推荐模组内电源采用若干小型开关电源分布式供电方式,以提高开关电源的能量转换效率。譬如:交流220V总线输入、最大输入功率是35W、输出可调电压的开关电源模块效率可以达到86%以上。

关键字:  LED显示屏,  计算机,  电子,  光学,  电气,  结构

全彩LED显示的控制系统节能管理

LED显示屏是一种集计算机技术,电子技术,光学技术,电气技术和结构技术等各种现代工程技术于一体的系统集成工程应用。全彩LED显示屏系统基本组成如图1,包括:计算机及系统管理界面,LED交流电源配电柜,信号前端处理器,显示屏端信号分配器,全彩LED显示屏(全彩LED模组阵列)等。

LED显示屏系统上位机的节能管理

如图1所示,通常LED显示屏上位机包括计算机硬件及上位机软件,它在LED显示屏系统中既是显示屏系统的媒体编辑平台,为显示屏提供图像视频信号源;又是显示屏系统的控制平台,控制系统软硬件设备。从节能角度出发,上位机适当调控系统各种设备,从而实现LED显示系统节能目的:(1)根据实际反馈的电气负载要求,对配电柜的三相交流供电进行平衡控制(控制如图1的配电柜);(2)根据实际的需要,关闭屏体的部分无用区域;(3)控制新兴的能源供电(如太阳能和风能等),提高电能的变换效率;(4)实现时间程序管理LED显示亮度;(5)实现环境亮度程序控制LED显示等。

信号前端处理器的节能管理

如图2,信号前端处理器接收上位机来的控制命令和视频图像数据输入,然后将这两种数据信号通过FPGA进行数据重组排列,再通过光纤发送给信号分配器;同样接收光纤反馈回的数据信号,并通过FPGA完成对数据的解析并通过MCU转发给上位机处理。没有上位机参与工作的LED系统中,信号前端处理器的嵌入式平台就将承担起对整个系统同设备的智能控制功能。就节能举措而言:(1)具有LED的时间程控功能;(2)具有LED的环境亮度程控功能;(3)具有供电设备管理控制功能,提高电能转换效率等。

显示屏端信号分配器作用

如图3,显示屏端信号分配器接收光纤来的数据信号,首先将视频数据和命令数据信号按照显示屏的模组阵列实际工程排列情况分割成4组信号,然后通过LVDS接口将视频数据和命令数据分别发给LED显示屏体的四个输入端口。另一方面,屏体来的命令反馈数据信号或检测数据通过485接口进入处理器FPGA中,然后通过光纤调制器的向信号前端处理器发送。它是信号传输枢纽,各种数据的分组排列及下传和上传的大量处理工作在此处理。

模组节能设计

全彩LED模组如图4,包括:模组信号控制模块,全彩LED点阵模块,模组供电模块等。

模组信号控制模块节能设计

模组信号控制模块如图5,分配器下传的数据信号通过LVDS接口芯片转换得到数据流分成两路,其中一路以LVDS信号环接输出到下一模组的输入口,另一路以TTL电平的方式输入到FPGA;FPGA再根据模组ID号,解析出命令数据和视频数据;视频数据按地址截取相应的区域视频数据、缓存、并以一定的算法格式输出去驱动LED点阵模块;命令数据,则执行相应命令,如GAMMA校正、亮度调整、模块电源的开关等。同时,根据相关的命令要求,模块应答回传信号及相关传感器的检测数据通过上传通道向上传输。

模块信号控制模块、显示屏端分配器、前端信号处理器和上位机(包括控制界面软件)组成闭环的控制过程;实现环境亮度程控、时间亮度程控,电源模块调整,LED显示屏显示负载实时调节等功能,为显示屏的节能应用提供了信号处理的必要软硬件条件。

模组LED点阵模块节能设计

LED点阵模块设计节能举措主要围绕着LED灯管选择和恒流驱动芯片驱动设计来进行。

(1)LED点阵模块的像素设计和高光效的LED灯管选择:全彩LED点阵模块的像素一般由红绿蓝三个子像素组成,像素点功耗是:(V红×I红)+(V绿×I绿)+(V蓝×I蓝)。LED器件正向电流与发光亮度近似于线性正比例关系。选用高亮度的LED器件组,像素点功耗相对较小,显示屏功耗也相对较小。以P20全彩显示屏为例,红、绿、蓝LED标称亮度各提高20%,在显示屏亮度不变的情况下,显示屏的功耗会降低15%以上。因此,选发光效率高、发光强度值大的LED器件可以有效节能。

(2)高效的LED驱动电路设计:传统全彩LED显示屏采用5V的电源给LED点阵模块供电(如图6所示),分压在恒流IC上的电压,除去恒流芯片达到线性导通所必需的正向电压值外,其余剩下的电压均会造成无用的功耗,转换成热能。节能的LED显示屏像素驱动电路如图7所示,这种设计采用红绿蓝LED器件分别供电的方式:V红、V绿、V蓝。比较试验证明,在选用相同LED器件和相同恒流驱动芯片,并要求显示同样亮度的条件下,节能电路与传统电路比较节能30%以上。

模组电源电源拓扑节能设计

全彩LED显示屏的模组供电方式普遍采用低压大电流开关电源模块输出并联的总线供电方式。由于开关电源输出的电流大,变压器铜损大,整个的电源转换效率低(满负载只能做到75%以内)。本文推荐模组内电源采用若干小型开关电源分布式供电方式,以提高开关电源的能量转换效率。譬如:交流220V总线输入、最大输入功率是35W、输出可调电压的开关电源模块效率可以达到86%以上。该开关电源的能量变换效率相对大电流并联供电的常规供电拓扑结构而言节能在10%以上。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;

阅读延展
LED显示屏 计算机 电子 光学 电气 结构
  • LED显示屏应用需求与驱动IC技术路线

    LED显示屏应用需求与驱动IC技术路线

    led显示屏不断发展,驱动IC占据了重要的位置,驱动IC与逻辑IC以及MOS开关组成的周边IC共同作用于LED显示屏的显示功能。且决定了其呈现的效果。随着LED显示屏三高需求明显,来源于应用端需求驱动IC逐渐迈入了驱动IC高集成化的技术路线。

  • IC在照明与显示领域扮演怎样的角色?

    IC在照明与显示领域扮演怎样的角色?

    LED显示屏是被应用得极其普遍的一种产品设备,最常见的莫过于电脑、幕墙屏、橱窗屏,还有在体育赛事、演唱会场合常见的互动地砖屏、透明屏,然而,当LED耗电较大的时候,驱动IC的重要作用就体现出来了,那么,IC在照明与显示领域扮演怎样的角色呢?

  • LED显示屏驱动IC的发展有多快

    LED显示屏驱动IC的发展有多快

    文本主要介绍了LED显示器的应用技术和情景在不断更新,同时随着不断更新驱动IC也产生了许多问题,驱动IC技术不断创新。

  • 关于led显示屏驱动ic这几个方面的介绍

    关于led显示屏驱动ic这几个方面的介绍

    本文主要介绍了led显示屏不可或缺的一部分:驱动IC。依次介绍了驱动ic的演变,驱动ic的性能参数指标,驱动ic的发展趋势。

  • led显示屏创新发展史

    led显示屏创新发展史

    本文主要介绍了led显示屏发展史,不断微创新,不断演变,一满足客户个性化的需要求。新型led屏幕企业不断涌现。

  • COB封装对LED显示屏的好处与该领域的机遇

    COB封装对LED显示屏的好处与该领域的机遇

    本文介绍了随着小间隔LED市场发展,竞争日趋猛烈,对技术的需求越来越高,COB封装技术的出现如同是led技术汇总一颗夺目的新秀。具有的多种优势,让led显示屏厂商看到了机遇。

  • 新的消费趋势将影响未来连接器设计

    新的消费趋势将影响未来连接器设计

    消费性产品设计一直是电子元件小型化的关键驱动力。在摩尔定律指导下,计算机技术发展迅速,超薄便携式笔记本电脑改变了我们的工作和学习方式。

  • 圆形橫截面磁环及θ型圆形橫截面磁环电感器

    圆形橫截面磁环及θ型圆形橫截面磁环电感器

    在网络通讯、自动控制、电力驱动、交通运输、计算机、太阳能和风力发电等广泛领域,所使用的各种电子设备和装置中的电源变换器(开关电源、不间断电源、变频电源等),都大量地使用了各类环形电感器。

  • 2023热门领域连接器应用简报(2023年8月)81页PPT

    2023热门领域连接器应用简报(2023年8月)81页PPT

    连接器是构成完整系统连接所必须的基础元件,广泛应用于汽车、通信、计算机等消费电子、工业、交通、军事等领域。近年来,全球连接器市场规模稳健增长,我国也已成为全球最大的连接器消费市场,占比超过32%。同时,中国连接器市场也是全球增速最大的市场。

  • 面向大数据与人工智能时代的高速互连技术,第三届中国互连技术与产业大会在无锡举办

    面向大数据与人工智能时代的高速互连技术,第三届中国互连技术与产业大会在无锡举办

    12月8日,由中国计算机互连技术联盟、深圳市连接器行业协会共同主办的“第三届中国互连技术与产业大会”在江苏无锡举办,现场亮点多多~

  • 以太网发展依然强劲

    以太网发展依然强劲

    以太网是一套使用LAN的计算机网络技术,用于局域网和广域网。最早的版本以每秒2.94兆的速度运行,比要取代的终端网络快大约1万倍。但它有可能产生其它问题,比如仅仅两台计算机同时通话就足以造成网络延迟。然而,在短短的几年时间里,以太网被商业化,并在1983年推出标准IEEE 802.3。

  • 国家鼓励发展人形机器人 工业连接器关系密切

    国家鼓励发展人形机器人 工业连接器关系密切

    人形机器人有望成为继计算机、智能手机、新能源汽车后的颠覆性产品!国家出台推动人形连机器人的发展,对工业连接器厂商有何影响?

  • 英飞凌推出新型固态隔离器,交换速度更快,功耗降低高达70%

    英飞凌推出新型固态隔离器,交换速度更快,功耗降低高达70%

    英飞凌科技股份公司在美国国际电力电子应用展览会(APEC)上推出全新固态隔离器产品系列。该系列可实现更快速、可靠的电路交换,并拥有光学固态继电器(SSR)所不具备的保护功能。

  • 首款!艾迈斯欧司朗推出全新用于CT探测器的512通道ADC

    首款!艾迈斯欧司朗推出全新用于CT探测器的512通道ADC

    全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,推出了首款用于CT探测器的512通道模拟数字转换器(ADC)AS5912,采用23mm×15mm球栅阵列(BGA)的紧凑型系统级封装解决方案。

  • 共封装光学解决方案是否正在走向现实?

    共封装光学解决方案是否正在走向现实?

    硅光子学的快速发展和新一代共封装光学技术使设计者能够将不同芯片直接安装在一个共同基板上,节省功率和扩大带宽。

  • 美芯晟推出同时集成旋转和按键检测的光学追踪传感器MT3502

    美芯晟推出同时集成旋转和按键检测的光学追踪传感器MT3502

    智能传感技术是智能制造和物联网的先行技术,作为前端感知工具,具有非常重要的意义。美芯晟最新推出的MT3502是一款同时集成旋转和按键检测的高性能、超低功耗光学追踪传感器,集成850nm VCSEL发射器、红外接收阵列、高精度ADC及高速数字图像处理模块。

  • 美芯晟光学传感器系列产品

    美芯晟光学传感器系列产品

    光学传感器可广泛应用于智能可穿戴设备、智能工业、智能交通、智能电网等领域,部分电子消费市场台系厂商占有一定份额,随着下游需求的增加和行业重视度的提升,国内公司也正在积极布局高端传感器领域。

  • 十年砥砺前行 掀开岳一的成长篇章

    十年砥砺前行 掀开岳一的成长篇章

    如今,在3C电子、汽车行业、橡胶行业等光学影像检测装备具备深厚积累的岳一科技已走过十年的成长之路。企业从无到有,从小到大,岳一未来在光学影像检测的道路上还将会创造怎样的辉煌?

  • 高带宽电源模块消除高压线路纹波抑制的干扰

    高带宽电源模块消除高压线路纹波抑制的干扰

    汽车电气化可能是我们这个时代影响最广的电源挑战。这是汽车 OEM 厂商在从内燃机向纯电动汽车转型的过程中面临的一个全球性问题。各地的研发团队都在探索新的方法,试图找到更好的解决方案来解决新旧电源的难题。

  • 人机协作机器人促进了连接器公司的发展

    人机协作机器人促进了连接器公司的发展

    连接器供应商被要求增加生产,降低价格,增加组件功能,缩小形状尺寸,保持丰富的产品库存,遵守不断变化的法规,并帮助客户设计新的连接、电气化、安全、高速、可持续、可靠、智能技术,包括云连接系统、自动化和人工智能等。

  • 微振试验中接触界面成分对镍镀层电气和摩擦学特性的影响

    微振试验中接触界面成分对镍镀层电气和摩擦学特性的影响

    本文旨在介绍一项专题研究的后续成果。该项目旨在研究镍镀层在微振腐蚀条件下的电气、机械和微观结构特性。

  • 紧凑型电源模块推动汽车电气化

    紧凑型电源模块推动汽车电气化

    汽车电气化掀起了一场前所未有的研发浪潮,包括优化供电网络、本地及全球充电基础设施。由于这个问题的复杂性,有必要探索新的方法并开发创造性的解决方案。

  • 汽车架构集成化下,磁元件扁线应用风口已至

    汽车架构集成化下,磁元件扁线应用风口已至

    随着新能源汽车技术的日新月异,汽车电气架构向集成式发展,元器件小型化逐渐成为趋势。在此背景下,应用在车载端的扁线会有望迎来新的发展风口吗?

  • 电动汽车(EV)双向供电:实用且创新的电源模块使用机会

    电动汽车(EV)双向供电:实用且创新的电源模块使用机会

    汽车电气化竞争已经拉开序幕,无论是因为政府法规和奖励措施的刺激,还是受消费者对性能更高、续航更远且功能更多的绿色交通解决方案的需求推动。各大汽车制造商都正积极参与这一竞争。双向电源转换为所有电源系统设计师创造了一个独特的创新机会。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任