二极管原理和单向导电 一起来了解一下吧
2020-08-17 16:44:02 来源:360个人图书馆 点击:2105
谈起二极管我坚信大家都有一定的了解,二极管在电子线路中具有一个十分重要的作用,二极管有一个十分关键的特点--单向导电性。换句话说电流只有从正极流入负极,大家就可以利用二极管这一特点来完成整流、检波、限幅、维护等功效。
但是二极管真的就是单向导电吗?回答当然是否定的!
每一种类型的二极管都会有一个非常详细的工作参数:例如二极管最大的正向电流、最大的反向工作电压、反向修复时间、反向电流等。
二极管的反向电流是什么情况呢?不是讲好单向导电的吗?反向为什么会有电流?这就需要从二极管的构造和工作原理谈起了...
反向电流造成的关键缘故是由于有结电容的存有;当二极管经过交流电流的情况下由于二极管的单向导电特点它能够把交流电流变为直流电源,但另外因为二极管本身存有电容效用(尽管电容量十分小)交流电流的负自感电动势也会反向穿过二极管从而产生反向电流,反向电流的电流量是由二极管结电容的容积决策的。另外反向电流和反向修复时间也是息息相关的,结电容越大反向修复时间就会越长这也直接影响了二极管的输出功率。
那么难题来,究竟什么叫结电容?怎么会有结电容?结电容又是怎么造成的?有木有方法把这可恶的结电容消除呢?
要想弄清楚这个问题就务必要依据二极管的构造和工作原理来剖析,二极管各自存有二种电容,也就是扩散电容和势垒电容。
二极管的构造和工作原理
二极管的扩散电容:p-n结在正偏时所表现出的一种求微分电容效用。pn结扩散电容是来源于非均衡极少数载流子在pn结两侧的中性化区域内的正电荷储存所导致的电容效用;简易而言便是由于PN结加正向电压的情况下因为P\N区的正电荷浓度值差的转变便会有正电荷的累积和释放出来,这一累积和释放出来的全过程就相当于一个电容充放电,它是由二极管独特的原材料和构造所决策的,因此扩散电容根本就没有办法清除。
二极管的势垒电容:PN结加反向工作电压的情况下因为PN结反向截止电流不可以直接穿过二极管,PN结的两个电级就相对性绝缘,这刚好就组成了一个电容器的原型:一切绝缘体中的两个金属材料电导体都存有电容效用,电容的容积与两极的间距成反比,与两极的总面积成正比。
换句话说二极管的电极总面积越大它的结电容就会越大,例如面触碰型的整流二极管,整流二极管的电极表面积非常大,非常适合经过大电流。但另外也由于电极的总面积扩大进而扩大了整流二极管的结电容,这样的话也限定了整流二极管的输出功率。
而PN结总面积越小结电容就会越小,另外它可以经过的电流也就越小,例如接触力型的检波二极管,检波二极管不用穿过很大的电流量,检波二极管的电极总面积十分小,那样的话就可以严控结电容进而确保高频率检波的品质。
以上这些便是二极管的一些附设特点,你都看懂了没有啊!
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
半导体激光加工设备正加快迭代升级。从传统的二极管泵浦到光纤耦合、超快激光技术,设备在功率稳定性、加工精度和能耗表现上均显著提升。与此同时,国产厂商也在技术突破和成本控制方面不断追赶,逐步缩小与国际领先企业的差距
DFNAK3系列可为高密度设计中的直流电源和PoE系统提供高浪涌保护并节省空间
紧凑型SOD-123FL瞬态抑制二极管的峰值功率比SZSMF4L系列高出50%,帮助工程师保护空间有限的电动汽车和汽车电子产品免受高压浪涌的影响。
折回技术可保护PoE、服务器和工业电源中的DC/DC转换器。
英飞凌推出市场首款2000V分立式SiC二极管,以TO-247-2封装和.XT互联技术提升1500V系统效率;圣邦微电子发布新款电池充电控制器,具备功率监控和SMBus功能;先楫半导体则带来600MHz RISC-V双核MCU HPM6P81,拥有32路高分辨率PWM和4×16位ADC。
盘点近期意法半导体、Vishay、Nexperia等全球半导体头部厂商发布的诸多新品,包括降压DC-DC转换器、碳化硅肖特基二极管等产品,应用领域涵盖电动汽车充电、工业电机驱动、光伏系统等等。

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论