账号
密码
下次自动登录 进入商务室
立即注册忘记密码?
人工智能在军事行动中的作用正在向战场扩展,在战场上它被用来防御、攻击和观察。这项技术潜力巨大,但也带来了相当多的技术和伦理方面的考虑。
AI数据中心的工作负载变化无常,可能导致电网压力骤增,威胁系统稳定。设计团队正绞尽脑汁寻找方法,确保核心部件温度始终低于临界值。这个问题并非突然出现,其重要性逐渐凸显。
玻璃基板生态系统中的企业正大力推进技术升级,为应对多芯片先进封装中芯片与基板尺寸的持续增长做足准备。目前主流工艺是先进行激光修整再采用氢氟酸刻蚀来制作不同形状和尺寸的玻璃通孔,但若能通过激态原子激光直接刻蚀工艺实现后续铜填充所需的孔形,则会成为更具环保优势的解决方案。
材料科学领域的最新突破催生了新型防护产品,能够有效保护互连线路和电子系统免受日常使用中的各种挑战。与技术精湛且富有创新精神的供应商合作,共同选定并设计出适用于各类工况的理想组件,是打造成功应用方案的关键第一步。
随着我国航空、航天、船舶、勘探等工业、农业、军工事业的突飞猛进,各种高温、高压、腐蚀等工作环境、工作设备的增多,玻璃烧结密封连接器的需求也在与日俱增,本文将对电连接器的封接技术进行简要阐述。
汽车应用领域恶劣的工作环境使得半永久性连接器易受间歇性高接触电阻的影响,最终导致失效,而微振腐蚀通常是其失效的原因。然而,样品接触材料的实验测试所产生的结果却与商业测试的连接器不符。
DDR 与 SODDR 二者存在何种差异?LPDDR 的技术定义是什么?SOCAMM2 又指代何种规格?为解答上述疑问,本文将对相关技术概念进行系统梳理,形成一篇科普文章。
伴随AI和数据中心领域对硬件的需求水涨船高,PCIe 5.0标准成为一个重要的里程碑。尽管PCIe 5.0主要沿用了与4.0相同的技术,但一些巧妙的优化措施使其能够有效地将最大数据传输速率提高四倍。PCIe 5.0的设计和合规具有挑战性,因此需要非常先进的硬件和软件解决方案来简化流程。
电池供电的电动自行车和电动踏板车为传统摩托车提供了一种可持续且环保的替代方案。许多电动自行车采用较大的48V或36V电池,在提供充足扭矩的同时支持以更低电流运行。
本期,为大家带来的是《采用峰值电流模式控制的功率因数校正》,将介绍一种无需采样电阻、避免中点采样问题的创新PFC控制方法。
文章综述了工业控制领域的不同形式,过程控制基本结构、流程工业的过程控制技术、制造业的过程控制技术、控制系统的构成和工业控制技术的发展趋势。
压敏电阻器技术的发展趋势呈现出智能化、多功能集成和环保化三大特点。
采用铜电极可以大大降低ZnO压敏元件的生产成本,本文对比研究烧渗铜电极与银电极压敏元件特性。制备了三种不同厚度、化学组成相同的压敏陶瓷圆片,分别烧结银电极和铜电极进行对比试验。
三相逆变电路在中大功率电源中应用广泛。当逆变电感采用分离元件时,体积大、重量重;而采用常规磁集成方案和接线方式时,又面临纹波大的问题。针对以上问题,论文提出了一种新型的三相五柱耦合集成逆变电感,将三颗电感集成在一对平行的条状磁轭上。
为实现脱碳社会、可再生能源为主的电源化、电气化,加上能源效率的提高,必须将以下技术,例如氢利用的扩大,CO2的分离/回收、储存(CCS),以及CO2再循环(recycle)等新技术实现普及并推广。
本文将对GaN技术如何帮助解决并应对人形机器人中伺服系统面临的挑战与电机和运动功能在类人机器人中的应用二大问题作研讨。
AEC-Q200认证是所有无源(被动)电子元件在汽车行业内使用时必须满足的抗应力全球标准。新能源汽车许多结构场景会应用到电感器和变压器,通过了标准中包含的一系列严格的应力测试,则视为“符合AEC-Q200标准”。
磁场定向控制(Field-Oriented Control, FOC)作为BLDC精准控制的核心技术,其控制精度与动态响应性能高度依赖电机驱动微控制单元(Microcontroller Unit, MCU)的运算算力与多模块协同能力。
赛元SC32L14系列工业级低功耗触控MCU通过硬件架构创新与算法优化,为智能水气表提供了一体化解决方案。
基于建模和测量数据,本白皮书调查了错位和针脚压缩如何影响实际设计。它还解释了如何检测和避免问题,以优化性能并完成成功的设计。
在毫米波设计中,压缩安装连接器通常用于避免与焊接变化相关的问题。然而,在使用压缩安装连接器时,应考虑到针脚压缩以及错位对高频电气性能的潜在影响。
据观测,汽车连接器镀锡接触件接触电阻因微振腐蚀而增大。微振腐蚀是由热循环或振动引起的,本研究建立了测量条件,以获得镀锡接触件微振腐蚀磨痕上的接触电阻分布情况,从而阐明接触电阻与氧化物形成之间的关系。
电池技术创新是弥合储能需求与现有生产能力差距的关键,既能提升性能又能保障安全。本文专访芝加哥大学分子工程学教授Y Shirley Meng、SES人工智能首席技术官Dr. Kang Xu,以及德雷克塞尔大学材料科学与工程学教授 Dr. Yury Gogotsi,共同探讨这些前沿技术及其实际应用。
2020年4月,美国联邦通信委员会(FCC)投票通过将6GHz频谱划为免许可频段供Wi-Fi使用,这标志着Wi-Fi正式进入“三频”时代——除Wi-Fi 6及前代技术使用的2.4GHz和5GHz频段外,Wi-Fi 6E也能在6GHz频段工作。2024年1月,Wi-Fi联盟发布了Wi-Fi CERTIFIED 7认证标准,标志着Wi-Fi 7正式问世。